Riesthuis Paul, Otgaar Henry, Bücken Charlotte
Faculty of Law and Criminology, KU Leuven, Leuven, Belgium.
Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
Behav Res Methods. 2025 Mar 18;57(4):120. doi: 10.3758/s13428-025-02646-x.
The receiver operating characteristic (ROC) curve and its corresponding (partial) area under the curve (AUC) are frequently used statistical tools in psychological research to assess the discriminability of a test, method, intervention, or procedure. In this paper, we provide a tutorial on conducting simulation-based power analyses for ROC curve and (p)AUC analyses in R. We also created a Shiny app and the R package "ROCpower" to perform such power analyses. In our tutorial, we highlight the importance of setting the smallest effect size of interest (SESOI) for which researchers want to conduct their power analysis. The SESOI is the smallest effect that is practically or theoretically relevant for a specific field of research or study. We provide how such a SESOI can be established and how it changes hypotheses from simply establishing whether there is a statistically significant effect (i.e., null-hypothesis significance testing) to whether the effects are practically or theoretically important (i.e., minimum-effect testing) or whether the effect is too small to care about (i.e., equivalence testing). We show how power analyses for these different hypothesis tests can be conducted via a confidence interval-focused approach. This confidence interval-focused, simulation-based power analysis can be adapted to different research designs and questions and improves the reproducibility of power analyses.
接受者操作特征(ROC)曲线及其相应的曲线下(部分)面积(AUC)是心理学研究中常用的统计工具,用于评估测试、方法、干预或程序的辨别力。在本文中,我们提供了一个关于在R中对ROC曲线和(p)AUC分析进行基于模拟的功效分析的教程。我们还创建了一个Shiny应用程序和R包“ROCpower”来执行此类功效分析。在我们的教程中,我们强调了设定研究者想要进行功效分析的最小效应量感兴趣值(SESOI)的重要性。SESOI是对特定研究领域在实际或理论上相关的最小效应。我们介绍了如何建立这样一个SESOI,以及它如何将假设从简单地确定是否存在统计学上显著的效应(即零假设显著性检验)转变为效应在实际或理论上是否重要(即最小效应检验),或者效应是否小到可以忽略不计(即等效性检验)。我们展示了如何通过一种以置信区间为重点的方法对这些不同的假设检验进行功效分析。这种以置信区间为重点、基于模拟的功效分析可以适应不同的研究设计和问题,并提高功效分析的可重复性。