Suppr超能文献

准备好进行ROC分析了吗?关于基于模拟的功效分析的教程,用于ROC曲线分析的零假设显著性检验、最小效应检验和等效性检验。

Ready to ROC? A tutorial on simulation-based power analyses for null hypothesis significance, minimum-effect, and equivalence testing for ROC curve analyses.

作者信息

Riesthuis Paul, Otgaar Henry, Bücken Charlotte

机构信息

Faculty of Law and Criminology, KU Leuven, Leuven, Belgium.

Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.

出版信息

Behav Res Methods. 2025 Mar 18;57(4):120. doi: 10.3758/s13428-025-02646-x.

Abstract

The receiver operating characteristic (ROC) curve and its corresponding (partial) area under the curve (AUC) are frequently used statistical tools in psychological research to assess the discriminability of a test, method, intervention, or procedure. In this paper, we provide a tutorial on conducting simulation-based power analyses for ROC curve and (p)AUC analyses in R. We also created a Shiny app and the R package "ROCpower" to perform such power analyses. In our tutorial, we highlight the importance of setting the smallest effect size of interest (SESOI) for which researchers want to conduct their power analysis. The SESOI is the smallest effect that is practically or theoretically relevant for a specific field of research or study. We provide how such a SESOI can be established and how it changes hypotheses from simply establishing whether there is a statistically significant effect (i.e., null-hypothesis significance testing) to whether the effects are practically or theoretically important (i.e., minimum-effect testing) or whether the effect is too small to care about (i.e., equivalence testing). We show how power analyses for these different hypothesis tests can be conducted via a confidence interval-focused approach. This confidence interval-focused, simulation-based power analysis can be adapted to different research designs and questions and improves the reproducibility of power analyses.

摘要

接受者操作特征(ROC)曲线及其相应的曲线下(部分)面积(AUC)是心理学研究中常用的统计工具,用于评估测试、方法、干预或程序的辨别力。在本文中,我们提供了一个关于在R中对ROC曲线和(p)AUC分析进行基于模拟的功效分析的教程。我们还创建了一个Shiny应用程序和R包“ROCpower”来执行此类功效分析。在我们的教程中,我们强调了设定研究者想要进行功效分析的最小效应量感兴趣值(SESOI)的重要性。SESOI是对特定研究领域在实际或理论上相关的最小效应。我们介绍了如何建立这样一个SESOI,以及它如何将假设从简单地确定是否存在统计学上显著的效应(即零假设显著性检验)转变为效应在实际或理论上是否重要(即最小效应检验),或者效应是否小到可以忽略不计(即等效性检验)。我们展示了如何通过一种以置信区间为重点的方法对这些不同的假设检验进行功效分析。这种以置信区间为重点、基于模拟的功效分析可以适应不同的研究设计和问题,并提高功效分析的可重复性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a5/11920309/fcd2f908f06a/13428_2025_2646_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验