Lin Dewu, Lin Yushuang, Pan Ruihong, Li Jiapei, Zhu Anquan, Zhang Tian, Liu Kai, Feng Dongyu, Liu Kunlun, Zhou Yin, Yang Chengkai, Hong Guo, Zhang Wenjun
Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, 999077, People's Republic of China.
College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, People's Republic of China.
Nanomicro Lett. 2025 Mar 19;17(1):193. doi: 10.1007/s40820-025-01704-5.
The development of flexible zinc-ion batteries (ZIBs) faces a three-way trade-off among the ionic conductivity, Zn mobility, and the electrochemical stability of hydrogel electrolytes. To address this challenge, we designed a cationic hydrogel named PAPTMA to holistically improve the reversibility of ZIBs. The long cationic branch chains in the polymeric matrix construct express pathways for rapid Zn transport through an ionic repulsion mechanism, achieving simultaneously high Zn transference number (0.79) and high ionic conductivity (28.7 mS cm). Additionally, the reactivity of water in the PAPTMA hydrogels is significantly inhibited, thus possessing a strong resistance to parasitic reactions. Mechanical characterization further reveals the superior tensile and adhesion strength of PAPTMA. Leveraging these properties, symmetric batteries employing PAPTMA hydrogel deliver exceeding 6000 h of reversible cycling at 1 mA cm and maintain stable operation for 1000 h with a discharge of depth of 71%. When applied in 4 × 4 cm pouch cells with MnO as the cathode material, the device demonstrates remarkable operational stability and mechanical robustness through 150 cycles. This work presents an eclectic strategy for designing advanced hydrogels that combine high ionic conductivity, enhanced Zn mobility, and strong resistance to parasitic reactions, paving the way for long-lasting flexible ZIBs.
柔性锌离子电池(ZIBs)的发展面临着水凝胶电解质的离子电导率、锌迁移率和电化学稳定性之间的三方权衡。为应对这一挑战,我们设计了一种名为PAPTMA的阳离子水凝胶,以全面提高ZIBs的可逆性。聚合物基质中的长阳离子支链通过离子排斥机制构建了快速锌传输的通道,同时实现了高锌迁移数(0.79)和高离子电导率(28.7 mS cm)。此外,PAPTMA水凝胶中水的反应性受到显著抑制,因此对寄生反应具有很强的抗性。力学表征进一步揭示了PAPTMA优异的拉伸强度和粘附强度。利用这些特性,采用PAPTMA水凝胶的对称电池在1 mA cm下可实现超过6000小时的可逆循环,并在71%的放电深度下保持1000小时的稳定运行。当应用于以MnO为正极材料的4×4 cm软包电池时,该器件在150次循环中表现出卓越的运行稳定性和机械鲁棒性。这项工作提出了一种折衷策略,用于设计结合高离子电导率、增强的锌迁移率和对寄生反应的强抗性的先进水凝胶,为持久的柔性ZIBs铺平了道路。