Kasarda John P, Zhang Angela, Tong Hua, Tan Yuan, Wang Ruizi, Verstynen Timothy, Tarr Michael J
Department of Psychology, Carnegie Mellon University, Pittsburgh, 15213, USA.
Entertainment Technology Center, Carnegie Mellon University, Pittsburgh, 15213, USA.
Sci Rep. 2025 Mar 18;15(1):9287. doi: 10.1038/s41598-025-93036-y.
The modern study of perceptual learning across humans, non-human animals, and artificial agents requires large-scale datasets with flexible, customizable, and controllable features for distinguishing between categories. To support this research, we developed the Oomplet Dataset Toolkit (ODT), an open-source, publicly available toolbox capable of generating 9.1 million unique visual stimuli across ten feature dimensions. Each stimulus is a cartoon-like humanoid character, termed an "Oomplet," designed to be an instance within clearly defined visual categories that are engaging and suitable for use with diverse groups, including children. Experiments show that adults can use four to five of the ten dimensions as single classification criteria in simple perceptual discrimination tasks, underscoring the toolkit's flexibility. With the ODT, researchers can dynamically generate large, novel stimulus sets to study perceptual learning across biological and artificial contexts.
对人类、非人类动物和人工智能主体的知觉学习进行的现代研究,需要具备灵活、可定制和可控特征的大规模数据集,以便区分不同类别。为支持这项研究,我们开发了Oomplet数据集工具包(ODT),这是一个开源的、可公开获取的工具箱,能够在十个特征维度上生成910万个独特的视觉刺激。每个刺激都是一个类似卡通的类人角色,称为“Oomplet”,设计为清晰定义的视觉类别中的一个实例,这些类别引人入胜且适合包括儿童在内的不同群体使用。实验表明,在简单的知觉辨别任务中,成年人可以将十个维度中的四到五个作为单一分类标准,这突出了该工具包的灵活性。借助ODT,研究人员可以动态生成大量新颖的刺激集,以研究生物和人工环境中的知觉学习。