文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于拉曼光谱识别技术的不同施肥条件下盐碱地水稻淀粉变化特征研究

Characterization of rice starch changes in saline and alkaline area under different fertilization conditions based on Raman spectral recognition technology.

作者信息

Li Zhipeng, Miao Zhuang, Li Changming, Zhou Yingying, Qiu Yixin, Liu Chunyu, Teng Xing, Tan Yong

机构信息

Key Laboratory of Spectral Detection Science and Technology, School of Physics, Changchun University of Science and Technology, Changchun, 130000, China.

Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130000, China.

出版信息

Sci Rep. 2025 Mar 18;15(1):9299. doi: 10.1038/s41598-025-89102-0.


DOI:10.1038/s41598-025-89102-0
PMID:40102544
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11920442/
Abstract

Starch content in rice is one of the important parameters in characterizing the nutritional quality of rice, and the starch content of rice produced in saline soils under different fertilization conditions varies. In this study, Raman spectroscopy combined with three machine learning models, support vector machine (SVM), feedforward neural network, and k-nearest neighbor classification, was used to classify and evaluate the effect of different fertilizer treatments on rice. The collected rice spectral data were normalized before machine learning, then preprocessed with multiple scattering correction (MSC), standard normal variable, and Savitzky-Golay filtering algorithms to improve the quality and reliability of the data. The evaluation indexes such as the confusion matrix and the receiver operating characteristic curve comprehensively analyzed the model's performance. The research shows that the MSC preprocessing method significantly improves the classification accuracy and prediction ability in all three models, and the classification accuracy was close to 100%, while the overall performance of the SVM models after various preprocessing is the best among the three machine learning methods. The predictive coefficient of determination, predictive root mean square error, and predictive average relative error of the starch content detection model built by the SVM model after MSC preprocessing were 0.93, 0.04%, and 0.20%, respectively, which indicated that its prediction had high accuracy and low error. The results of this study used Raman spectroscopy to carry out the identification of different fertilization techniques and rice starch quality correlation characteristics, providing theoretical and experimental support for the rapid identification of rice quality.

摘要

水稻中的淀粉含量是表征水稻营养品质的重要参数之一,不同施肥条件下盐渍土种植水稻的淀粉含量存在差异。本研究采用拉曼光谱结合支持向量机(SVM)、前馈神经网络和k近邻分类三种机器学习模型,对不同肥料处理对水稻的影响进行分类和评价。在机器学习之前,对采集的水稻光谱数据进行归一化处理,然后采用多元散射校正(MSC)、标准正态变量和Savitzky-Golay滤波算法进行预处理,以提高数据的质量和可靠性。利用混淆矩阵和接收者操作特征曲线等评价指标综合分析模型性能。研究表明,MSC预处理方法在三种模型中均显著提高了分类准确率和预测能力,分类准确率接近100%,而在三种机器学习方法中,经过各种预处理后的SVM模型整体性能最佳。经过MSC预处理的SVM模型建立的淀粉含量检测模型的预测决定系数、预测均方根误差和预测平均相对误差分别为0.93、0.04%和0.20%,表明其预测具有较高的准确性和较低的误差。本研究结果利用拉曼光谱对不同施肥技术与水稻淀粉品质相关特性进行了识别,为水稻品质的快速识别提供了理论和实验支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7a/11920442/cc41a9237fb5/41598_2025_89102_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7a/11920442/f7ff1a3d531e/41598_2025_89102_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7a/11920442/809526584080/41598_2025_89102_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7a/11920442/c63212ca2921/41598_2025_89102_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7a/11920442/b12351c7201d/41598_2025_89102_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7a/11920442/cc41a9237fb5/41598_2025_89102_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7a/11920442/f7ff1a3d531e/41598_2025_89102_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7a/11920442/809526584080/41598_2025_89102_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7a/11920442/c63212ca2921/41598_2025_89102_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7a/11920442/b12351c7201d/41598_2025_89102_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7a/11920442/cc41a9237fb5/41598_2025_89102_Fig5_HTML.jpg

相似文献

[1]
Characterization of rice starch changes in saline and alkaline area under different fertilization conditions based on Raman spectral recognition technology.

Sci Rep. 2025-3-18

[2]
The Classification of Rice Blast Resistant Seed Based on Ranman Spectroscopy and SVM.

Molecules. 2022-6-25

[3]
Construction of classification models for pathogenic bacteria based on LIBS combined with different machine learning algorithms.

Appl Opt. 2022-7-20

[4]
A study on the changes in rice composition under reduced fertilization conditions using Raman spectroscopy technology.

Sci Rep. 2024-11-7

[5]
Rapid Determination of Polysaccharides in Cistanche Tubulosa Using Near-Infrared Spectroscopy Combined with Machine Learning.

J AOAC Int. 2023-7-17

[6]
Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds.

Spectrochim Acta A Mol Biomol Spectrosc. 2019-12-23

[7]
Quantitative Prediction of Protein Content in Corn Kernel Based on Near-Infrared Spectroscopy.

Foods. 2024-12-23

[8]
Rice Origin Tracing Technology Based on Fluorescence Spectroscopy and Stoichiometry.

Sensors (Basel). 2024-5-9

[9]
Study on the identification of resistance of rice blast based on near infrared spectroscopy.

Spectrochim Acta A Mol Biomol Spectrosc. 2022-2-5

[10]
Rapid identification of salmonella serovars by using Raman spectroscopy and machine learning algorithm.

Talanta. 2023-2-1

本文引用的文献

[1]
Raman spectroscopy-based microfluidic platforms: A promising tool for detection of foodborne pathogens in food products.

Food Res Int. 2024-3

[2]
Effect of starch and protein on eating quality of japonica rice in Yangtze River Delta.

Int J Biol Macromol. 2024-3

[3]
Raman Multi-Omic Snapshots of Koshihikari Rice Kernels Reveal Important Molecular Diversities with Potential Benefits in Healthcare.

Foods. 2023-10-13

[4]
Quantitative prediction of rice starch digestibility using Raman spectroscopy and multivariate calibration analysis.

Food Chem. 2024-3-1

[5]
Raman spectroscopy and Raman optical activity of blood plasma for differential diagnosis of gastrointestinal cancers.

Spectrochim Acta A Mol Biomol Spectrosc. 2024-1-15

[6]
Effects of Salt Stress on Grain Yield and Quality Parameters in Rice Cultivars with Differing Salt Tolerance.

Plants (Basel). 2023-9-12

[7]
Combination of NIR spectroscopy and algorithms for rapid differentiation between one-year and two-year stored rice.

Spectrochim Acta A Mol Biomol Spectrosc. 2023-4-15

[8]
Effect of chemical fertilizer reduction on the quality of hybrid rice of different amylose contents.

J Food Biochem. 2022-2

[9]
The mechanisms of improving coastal saline soils by planting rice.

Sci Total Environ. 2019-11-16

[10]
Preliminary study on classification of rice and detection of paraffin in the adulterated samples by Raman spectroscopy combined with multivariate analysis.

Talanta. 2013-6-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索