Woo Hyun Ji, Heo Sang Taek, Yoo Jeong Rae, Kim Misun, Oh Jaeseong, Bae In-Gyu, Bae Sohyun, Yoon Young-Ran, Hwang Jeong-Hwan, Hyun Miri, Kim Hyun Ah, Jung Sook In, Kwon Ki Tae, Hwang Soyoon, Kim Uh Jin, Kang Gaeun, Kim Young Jun, Yun Ji Hyun, Kim Tae-Eun, Kwon Tae-Kyu, Kim Min-Gul
Department of Healthcare Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea.
Nanum Space Co., Ltd, Jeonju, Jeonbuk, Republic of Korea.
Sci Rep. 2025 Mar 18;15(1):9293. doi: 10.1038/s41598-025-94416-0.
Severe fever with thrombocytopenia syndrome (SFTS) is a fatal tick-borne infectious disease that lacks effective treatments. Dynamic analysis that reflects changes in the SFTS patient's condition is needed. This study aimed to evaluate the time-dependent predictive performance of key biomarkers using a time-dependent Cox regression model. A retrospective multicenter cohort study was conducted on 440 SFTS patients hospitalized in South Korea between 2013 and 2024. Time-dependent Cox regression and time-dependent receiver operating characteristic (ROC) analyses were applied to assess the prognostic value of Blood Urea Nitrogen (BUN), Prothrombin Time (PT), and Activated Partial Thromboplastin Time (aPTT). Missing data were handled using multiple imputation. aPTT consistently demonstrated high predictive accuracy (AUC > 0.90) throughout the disease course, indicating its sustained role in coagulopathy. PT exhibited strong early-stage predictive power (AUC = 0.86 on day 2) but declined over time, reflecting its utility for early monitoring. BUN showed a progressive increase in predictive performance (AUC = 0.70 on day 2 to AUC = 0.78 on day 8), supporting its relevance in later stages of disease progression. Non-survivors exhibited significantly higher levels of BUN, PT, and aPTT compared to survivors. This study demonstrates the utility of time-dependent analysis for evaluating dynamic biomarker changes in SFTS patients. aPTT is a robust predictor throughout the disease course, while PT is valuable for early-stage assessment and BUN for later-stage management. These findings suggest the importance of integrating dynamic biomarker monitoring into clinical decision-making to improve prognosis in SFTS patients.
严重发热伴血小板减少综合征(SFTS)是一种致命的蜱传传染病,目前缺乏有效的治疗方法。因此需要进行动态分析以反映SFTS患者病情的变化。本研究旨在使用时间依赖性Cox回归模型评估关键生物标志物的时间依赖性预测性能。对2013年至2024年期间在韩国住院的440例SFTS患者进行了一项回顾性多中心队列研究。应用时间依赖性Cox回归和时间依赖性受试者工作特征(ROC)分析来评估血尿素氮(BUN)、凝血酶原时间(PT)和活化部分凝血活酶时间(aPTT)的预后价值。使用多重插补法处理缺失数据。aPTT在整个病程中始终表现出较高的预测准确性(AUC>0.90),表明其在凝血病中持续发挥作用。PT在疾病早期表现出较强的预测能力(第2天AUC=0.86),但随时间下降,反映出其在早期监测中的作用。BUN的预测性能逐渐提高(第2天AUC=0.70至第8天AUC=0.78),支持其在疾病进展后期的相关性。与幸存者相比,非幸存者的BUN、PT和aPTT水平显著更高。本研究证明了时间依赖性分析在评估SFTS患者动态生物标志物变化方面的实用性。aPTT在整个病程中是一个可靠的预测指标,而PT对早期评估有价值,BUN对后期管理有价值。这些发现表明,将动态生物标志物监测纳入临床决策以改善SFTS患者的预后具有重要意义。