Brar Lovepreet Singh, Agrawal Sunil, Singh Jaget, Dogra Ayush
Department of Electronics and Communication Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh160014, India.
Curr Med Imaging. 2025;21:e15734056356911. doi: 10.2174/0115734056356911250220124124.
The fundamental problem with the transmission and storage of medical images is their inherent redundancy and large size necessitating higher bandwidth and a significant amount of storage space.
The main objective is to enhance the compression efficiency through accurate segmentation followed by non-uniform compression through a cascade of encoders.
Due to a sharp growth in digital imaging data, it is highly desirable to reduce the size of medical images by a significant amount, without losing clinically important diagnostic information. The majority of the compression techniques reported in the literature use either manual or traditional segmentation techniques to extract the informative parts of the images. The methods based upon non-uniform compression require accurate extraction of the informative part of the image to achieve higher compression rate.
This research proposes unsupervised machine learning modified fuzzy c-means (FCM) clustering-based segmentation for accurate extraction of informative parts of MR images. The spatial constraints of the images are extracted using an automated region-growing algorithm and incorporated into the objective function of FCM clustering (RG-FCM) to enhance the performance of the segmentation process even in the presence of noise. Further, informative and background parts are subjected to two separate series of encoders, with higher bit rates for the informative part of the image.
Empirical analysis was done on the Magnetic Resonance Imaging (MRI)dataset, and experimental results indicate that the proposed technique outperforms similar existing techniques in terms of segmentation and compression metrics.
This integration of different segmentation techniques exhibits improvement in Jaccard and dice indexes, and cascade of different encoders endorse the superior performance of the proposed compression technique. The proposed technique can help in achieving higher compression of medical images without compromising clinically significant information.
医学图像的传输和存储存在的根本问题是其固有的冗余性和大尺寸,这需要更高的带宽和大量的存储空间。
主要目的是通过精确分割,随后通过级联编码器进行非均匀压缩来提高压缩效率。
由于数字成像数据的急剧增长,非常希望在不丢失临床重要诊断信息的情况下大幅减小医学图像的尺寸。文献中报道的大多数压缩技术使用手动或传统分割技术来提取图像的信息部分。基于非均匀压缩的方法需要精确提取图像的信息部分以实现更高的压缩率。
本研究提出基于无监督机器学习改进模糊c均值(FCM)聚类的分割方法,用于精确提取磁共振图像的信息部分。使用自动区域生长算法提取图像的空间约束,并将其纳入FCM聚类(RG-FCM)的目标函数中,以提高分割过程在存在噪声情况下的性能。此外,信息部分和背景部分分别经过两个独立的编码器系列,图像的信息部分采用更高的比特率。
对磁共振成像(MRI)数据集进行了实证分析,实验结果表明,所提出的技术在分割和压缩指标方面优于类似的现有技术。
不同分割技术的这种整合在杰卡德指数和骰子指数方面表现出改进,不同编码器的级联证明了所提出的压缩技术的卓越性能。所提出的技术有助于在不损害临床重要信息的情况下实现医学图像的更高压缩。