Lohit Himanshi, Kumar Dhirendra
Department of Applied Mathematics, Delhi Technological University, 110042, New Delhi, India.
Department of Applied Mathematics, Delhi Technological University, 110042, New Delhi, India.
Comput Biol Med. 2025 Sep;195:110458. doi: 10.1016/j.compbiomed.2025.110458. Epub 2025 Jun 16.
This paper proposes a novel clustering method for noisy image segmentation using a kernelized weighted local information approach under the Picture Fuzzy Set (PFS) framework. Existing kernel-based fuzzy clustering methods struggle with noisy environments and non-linear structures, while intuitionistic fuzzy clustering methods face limitations in handling uncertainty in real-world medical images. To address these challenges, we introduce a local picture fuzzy information measure, developed for the first time using Multivariate Coefficient of Variation (MCV) theory, enhancing robustness in segmentation. Additionally, we integrate non-Euclidean distance measures, including kernel distance for local information computation and modified total Bregman divergence (MTBD) measure for improving clustering accuracy. This combination enhances both local spatial consistency and global membership estimation, leading to precise segmentation. The proposed method is extensively evaluated on synthetic images with Gaussian, Salt and Pepper, and mixed noise, along with Brainweb, IBSR, and MRBrainS18 MRI datasets under varying Rician noise levels, and a CT image template. Furthermore, we benchmark our proposed method against two deep learning-based segmentation models, ResNet34-LinkNet and patch-based U-Net. Experimental results demonstrate significant improvements in segmentation accuracy, as validated by metrics such as Dice Score, Fuzzy Performance Index, Modified Partition Entropy, Average Volume Difference (AVD), and the XB index. Additionally, Friedman's statistical test confirms the superior performance of our approach compared to state-of-the-art clustering methods for noisy image segmentation. To facilitate reproducibility, the implementation of our proposed method is made publicly available at: Google Drive Repository.
本文提出了一种新颖的聚类方法,用于在图片模糊集(PFS)框架下使用核化加权局部信息方法进行噪声图像分割。现有的基于核的模糊聚类方法在噪声环境和非线性结构中存在困难,而直觉模糊聚类方法在处理现实世界医学图像中的不确定性方面存在局限性。为了应对这些挑战,我们引入了一种局部图片模糊信息度量,这是首次使用多元变异系数(MCV)理论开发的,增强了分割的鲁棒性。此外,我们整合了非欧几里得距离度量,包括用于局部信息计算的核距离和用于提高聚类精度的修正总布雷格曼散度(MTBD)度量。这种组合增强了局部空间一致性和全局隶属度估计,从而实现精确分割。所提出的方法在具有高斯噪声、椒盐噪声和混合噪声的合成图像上,以及在不同莱斯噪声水平下的Brainweb、IBSR和MRBrainS18 MRI数据集以及一个CT图像模板上进行了广泛评估。此外,我们将我们提出的方法与两个基于深度学习的分割模型ResNet34-LinkNet和基于补丁的U-Net进行了基准测试。实验结果表明,在分割精度方面有显著提高,如通过Dice分数、模糊性能指数、修正划分熵、平均体积差异(AVD)和XB指数等指标所验证。此外,弗里德曼统计检验证实了我们的方法在噪声图像分割方面比现有聚类方法具有优越的性能。为了便于重现,我们提出的方法的实现已在以下公开可用:谷歌驱动器存储库。