Correa Guerrero Natalia Belen, Perez M Dolores, Shibayama Naoyuki, Miyasaka Tsutomu
Toin University of Yokohama 1614 Kurogane-cho, Aoba Yokohama Kanagawa Japan
Depto. Física Materia Condensada (GIyA), Instituto de Nanociencia y Nanotecnología (CONICET), CNEA, Centro Atómico Constituyentes Avda. Gral. Paz 1499, San Martín 1650 Buenos Aires Argentina
Chem Sci. 2025 Mar 6;16(14):5807-5818. doi: 10.1039/d4sc07955h. eCollection 2025 Apr 2.
The demand for lead-free alternatives to lead-halide perovskite (LHP) solar cells has prompted extensive research efforts to explore alternative materials. Silver bismuth iodide (Ag-Bi-I) absorbers have an appropriate band gap between 1.8 and 1.9 eV for solar cells and exhibit a high absorption coefficient and excellent stability under ambient conditions. However, achieving sufficient power conversion efficiency (PCE) at the lab scale. The maximum PCE reported to date for Ag-Bi-I (SBI) materials is 5.56%, a much lower PCE value than those obtained for LHP based solar cells. Various approaches have been employed to improve the properties of SBI-based solar cells, including solution engineering, additive incorporation, and cation exchange. However, trap-assisted recombination and intrinsic limitations may be the underlying factors impacting their efficiency. With an overview of previous research efforts on SBI materials, we highlight different approaches for PCE enhancement and discuss the current state of basic research on material preparation and analysis. Furthermore, this study offers insights and prospects for SBI as a material for solar energy applications.
对无铅卤化铅钙钛矿(LHP)太阳能电池替代材料的需求促使人们开展了广泛的研究工作来探索替代材料。碘化银铋(Ag-Bi-I)吸收剂对于太阳能电池而言具有1.8至1.9电子伏特之间的合适带隙,并且在环境条件下表现出高吸收系数和出色的稳定性。然而,在实验室规模实现足够的功率转换效率(PCE)。迄今为止报道的Ag-Bi-I(SBI)材料的最大PCE为5.56%,这一PCE值远低于基于LHP的太阳能电池所获得的PCE值。已经采用了各种方法来改善基于SBI的太阳能电池的性能,包括溶液工程、添加剂掺入和阳离子交换。然而,陷阱辅助复合和固有局限性可能是影响其效率的潜在因素。在概述先前对SBI材料的研究工作的基础上,我们重点介绍提高PCE的不同方法,并讨论材料制备和分析基础研究的现状。此外,本研究为SBI作为太阳能应用材料提供了见解和前景。