Herzberg Simone D, Garduno-Rapp Nelly-Estefanie, Ong Henry H, Gangireddy Srushti, Chandrashekar Anoop S, Wei Wei-Qi, LeClere Lance E, Wen Wanqing, Hartmann Katherine E, Jain Nitin B, Giri Ayush
Vanderbilt University School of Medicine, Nashville, TN 37203, United States.
Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, United States.
JAMIA Open. 2025 Mar 18;8(2):ooaf014. doi: 10.1093/jamiaopen/ooaf014. eCollection 2025 Apr.
Degenerative rotator cuff tears (DCTs) are the leading cause of shoulder pain, affecting 30%-50% of individuals over 50. Current phenotyping strategies for DCT use heterogeneous combinations of procedural and diagnostic codes and are concerning for misclassification. The objective of this study was to create standardized phenotypic algorithms to classify DCT status across electronic health record (EHR) systems.
Using a de-identified EHR system, containing chart level data for ∼3.5 million individuals from January 1998 to December 2023, we developed and validated 2 types of algorithms-one requiring and one without imaging verification-to identify DCT cases and controls. The algorithms used combinations of International Classification of Diseases (ICD) / Current Procedural Terminology (CPT) codes and natural language processing (NLP) to increase diagnostic certainty. These hand-crafted algorithms underwent iterative refinement with manual chart review by trained personnel blinded to case-control determinations to compute positive predictive value (PPV) and negative predictive value (NPV).
The algorithm development process resulted in 5 algorithms to identify patients with or without DCT with an overall predictive value of 94.5%: (1) code only cases that required imaging confirmation (PPV = 89%), (2) code only cases that did not require imaging verification (PPV = 92%), (3) NLP-based cases that did not require imaging verification (PPV = 89%), (4) code-based controls that required imaging confirmation (NPV = 90%), and (5) code and NLP-based controls that did not require imaging verification (NPV = 100%). External validation demonstrated 94% sensitivity and 75% specificity for the code-only algorithms.
This work highlights the inaccuracy of previous approaches to phenotypic assessment of DCT reliant solely on ICD and CPT codes and demonstrate that integrating temporal and frequency requirements, as well as NLP, substantially increases predictive value. However, while the inclusion of imaging verification enhances diagnostic confidence, it also reduces sample size without necessarily improving predictive value, underscoring the need for a balance between precision and scalability in phenotypic definitions for large-scale genetic and clinical research.
These algorithms represent an improvement over prior DCT phenotyping strategies and can be useful in large-scale EHR studies.
退行性肩袖撕裂(DCTs)是肩部疼痛的主要原因,影响50岁以上人群的30%-50%。目前用于DCT的表型分析策略使用程序和诊断代码的异质组合,存在分类错误的问题。本研究的目的是创建标准化的表型算法,以在电子健康记录(EHR)系统中对DCT状态进行分类。
使用一个去识别化的EHR系统,该系统包含1998年1月至2023年12月约350万个体的病历级数据,我们开发并验证了两种类型的算法——一种需要影像验证,另一种不需要影像验证——以识别DCT病例和对照。这些算法使用国际疾病分类(ICD)/当前程序术语(CPT)代码和自然语言处理(NLP)的组合来提高诊断确定性。这些手工制作的算法经过训练有素的人员进行迭代优化,这些人员对病例对照判定不知情,通过人工病历审查来计算阳性预测值(PPV)和阴性预测值(NPV)。
算法开发过程产生了5种算法,用于识别有或无DCT的患者,总体预测值为94.5%:(1)仅代码且需要影像确认的病例(PPV = 89%),(2)仅代码且不需要影像验证的病例(PPV = 92%),(3)基于NLP且不需要影像验证的病例(PPV = 89%),(4)基于代码且需要影像确认的对照(NPV = 90%),以及(5)基于代码和NLP且不需要影像验证的对照(NPV = 100%)。外部验证显示仅代码算法的敏感性为94%,特异性为75%。
这项工作突出了以前仅依赖ICD和CPT代码对DCT进行表型评估方法的不准确之处,并表明整合时间和频率要求以及NLP可显著提高预测价值。然而,虽然纳入影像验证可提高诊断可信度,但它也会减少样本量,而不一定提高预测价值,这凸显了在大规模遗传和临床研究的表型定义中需要在精度和可扩展性之间取得平衡。
这些算法代表了对先前DCT表型分析策略的改进,可用于大规模EHR研究。