Suppr超能文献

基于便携式电子健康记录的算法开发,用于识别患有糖尿病视网膜病变的个体。

Development of Portable Electronic Health Record Based Algorithms to Identify Individuals with Diabetic Retinopathy.

作者信息

Breeyear Joseph H, Mitchell Sabrina L, Nealon Cari L, Hellwege Jacklyn N, Charest Brian, Khakharia Anjali, Halladay Christopher W, Yang Janine, Garriga Gustavo A, Wilson Otis D, Basnet Til B, Hung Adriana M, Reaven Peter D, Meigs James B, Rhee Mary K, Sun Yang, Lynch Mary G, Sobrin Lucia, Brantley Milam A, Sun Yan V, Wilson Peter W, Iyengar Sudha K, Peachey Neal S, Phillips Lawrence S, Edwards Todd L, Giri Ayush

出版信息

medRxiv. 2024 Jan 5:2023.11.10.23298311. doi: 10.1101/2023.11.10.23298311.

Abstract

OBJECTIVES

To develop, validate and implement algorithms to identify diabetic retinopathy (DR) cases and controls from electronic health care records (EHR)s. : We developed and validated EHR-based algorithms to identify DR cases and individuals with type I or II diabetes without DR (controls) in three independent EHR systems: Vanderbilt University Medical Center Synthetic Derivative (VUMC), the VA Northeast Ohio Healthcare System (VANEOHS), and Massachusetts General Brigham (MGB). Cases were required to meet one of three criteria: 1) two or more dates with any DR ICD-9/10 code documented in the EHR, or 2) at least one affirmative health-factor or EPIC code for DR along with an ICD9/10 code for DR on a different day, or 3) at least one ICD-9/10 code for any DR occurring within 24 hours of an ophthalmology exam. Criteria for controls included affirmative evidence for diabetes as well as an ophthalmology exam.

RESULTS

The algorithms, developed and evaluated in VUMC through manual chart review, resulted in a positive predictive value (PPV) of 0.93 for cases and negative predictive value (NPV) of 0.97 for controls. Implementation of algorithms yielded similar metrics in VANEOHS (PPV=0.94; NPV=0.86) and lower in MGB (PPV=0.84; NPV=0.76). In comparison, use of DR definition as implemented in Phenome-wide association study (PheWAS) in VUMC, yielded similar PPV (0.92) but substantially reduced NPV (0.48). Implementation of the algorithms to the Million Veteran Program identified over 62,000 DR cases with genetic data including 14,549 African Americans and 6,209 Hispanics with DR.

CONCLUSIONS/DISCUSSION: We demonstrate the robustness of the algorithms at three separate health-care centers, with a minimum PPV of 0.84 and substantially improved NPV than existing high-throughput methods. We strongly encourage independent validation and incorporation of features unique to each EHR to enhance algorithm performance for DR cases and controls.

摘要

目的

开发、验证并实施算法,以便从电子医疗记录(EHR)中识别糖尿病视网膜病变(DR)病例和对照。方法:我们在三个独立的EHR系统中开发并验证了基于EHR的算法,以识别DR病例以及患有I型或II型糖尿病但无DR的个体(对照),这三个系统分别是范德堡大学医学中心综合衍生数据库(VUMC)、俄亥俄州东北部退伍军人医疗保健系统(VANEOHS)和麻省总医院布莱根分院(MGB)。病例需满足以下三项标准之一:1)EHR中记录有两个或更多带有任何DR ICD - 9/10代码的日期;2)至少有一个关于DR的肯定性健康因素或EPIC代码,以及在不同日期的DR的ICD9/10代码;3)在眼科检查后24小时内出现的任何DR的至少一个ICD - 9/10代码。对照的标准包括糖尿病的肯定性证据以及一次眼科检查。

结果

通过在VUMC进行人工病历审查开发和评估的算法,病例的阳性预测值(PPV)为0.93,对照的阴性预测值(NPV)为0.97。在VANEOHS实施算法产生了类似的指标(PPV = 0.94;NPV = 0.86),而在MGB则较低(PPV = 0.84;NPV = 0.76)。相比之下,在VUMC中使用全表型关联研究(PheWAS)中实施的DR定义,产生了类似的PPV(0.92),但NPV大幅降低(0.48)。将算法应用于百万退伍军人计划,识别出超过62,000例有基因数据的DR病例,其中包括14,549名非裔美国人和6,209名西班牙裔DR患者。

结论/讨论:我们在三个不同的医疗保健中心证明了算法的稳健性,其最低PPV为0.84,并且与现有的高通量方法相比,NPV有显著提高。我们强烈鼓励进行独立验证,并纳入每个EHR特有的特征,以提高DR病例和对照的算法性能。

相似文献

10
Validation of a Deep Learning Algorithm for Diabetic Retinopathy.一种用于糖尿病视网膜病变的深度学习算法的验证
Telemed J E Health. 2020 Aug;26(8):1001-1009. doi: 10.1089/tmj.2019.0137. Epub 2019 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验