Suppr超能文献

一种使用深度卷积神经网络的增强型轻量级人脸活体检测方法。

An enhanced light weight face liveness detection method using deep convolutional neural network.

作者信息

Shinde Swapnil R, Bongale Anupkumar M, Dharrao Deepak, Thepade Sudeep D

机构信息

Department of Computer Science and Engineering, Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra 412115, India.

Department of Artificial Intelligence and Machine Learning, Bharati Vidyapeeth Deemed to be University, Department of Engineering and Technology, Kharghar, Navi Mumbai, Maharashtra 410210, India.

出版信息

MethodsX. 2025 Feb 17;14:103229. doi: 10.1016/j.mex.2025.103229. eCollection 2025 Jun.

Abstract

Authentication plays a pivotal role in contemporary security frameworks, with various methods utilized including passwords, hardware tokens, and biometrics. Biometric authentication and face recognition hold significant application potential, albeit susceptible to forgery, termed as face spoofing attacks. These attacks, encompassing 2D and 3D modalities, pose challenges through fake photos, warped images, video displays, and 3D masks. The existing counter measures are attack specific and use complex architecture adding to the computational cost. The deep transfer learning models such as AlexNet, ResNet, VGG, and Inception V3 can be used, but they are computationally expensive. This article proposes LwFLNeT, a lightweight deep CNN method that leverages parallel dropout layers to prevent over fitting and achieves excellent performance on 2D and 3D face spoofing datasets. The proposed methods is validated through the Cross-dataset train test evaluation. The methodology proposed in the article has the following key contributions:•Design of Light Weight Dual Stream CNN architecture with a parallel dropout layer to minimize over fitting issue.•Design of Generalized and Robust deep CNN architecture that detects both 2D and 3D attacks with higher efficiency compared to existing methodology.•Method validation done with State-of-the-Art methods using the standard performance metrics for face spoofing attack detection.

摘要

认证在当代安全框架中起着关键作用,使用的方法多种多样,包括密码、硬件令牌和生物识别技术。生物识别认证和人脸识别具有巨大的应用潜力,尽管容易被伪造,即所谓的人脸欺骗攻击。这些攻击包括2D和3D模式,通过假照片、扭曲图像、视频显示和3D面具构成挑战。现有的对策是针对特定攻击的,并且使用复杂的架构,增加了计算成本。可以使用诸如AlexNet、ResNet、VGG和Inception V3等深度迁移学习模型,但它们计算成本高昂。本文提出了LwFLNeT,一种轻量级深度卷积神经网络方法,该方法利用并行随机失活层来防止过拟合,并在2D和3D人脸欺骗数据集上取得了优异的性能。所提出的方法通过跨数据集训练测试评估进行了验证。本文提出的方法具有以下关键贡献:

•设计了带有并行随机失活层的轻量级双流卷积神经网络架构,以最小化过拟合问题。

•设计了通用且强大的深度卷积神经网络架构,与现有方法相比,能更高效地检测2D和3D攻击。

•使用用于人脸欺骗攻击检测的标准性能指标,通过最先进的方法对方法进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f86/11915004/795298e914ef/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验