Yang Guoyu, Dong Chenpeng, Wu Zhaoxi, Wu Peng, Yang Cao, Li Lanlan, Zhang Jianxiang, Wu Xinghuo
Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
Bioact Mater. 2025 Mar 1;48:564-582. doi: 10.1016/j.bioactmat.2025.02.036. eCollection 2025 Jun.
Intervertebral disc degeneration (IVDD) is a leading cause of discogenic low back pain, contributing significantly to global disability and economic burden. Current treatments provide only short-term pain relief without addressing the underlying pathogenesis. Herein we report engineering of biomimetic therapies for IVDD guided by single-cell RNA-sequencing data from human nucleus pulposus tissues, along with validation using animal models. In-depth analyses revealed the critical role of mitochondrial dysfunction in fibrotic phenotype polarization of nucleus pulposus cells (NPCs) during IVDD progression. Consequently, mitochondrial transplantation was proposed as a novel therapeutic strategy. Transplanted exogeneous mitochondria improved mitochondrial quality control in NPCs under pathological conditions, following endocytosis, separate distribution or fusion with endogenous mitochondria, and transfer to neighboring cells by tunneling nanotubes. Correspondingly, intradiscal mitochondrial transplantation significantly delayed puncture-induced IVDD progression in rats, demonstrating efficacy in maintaining mitochondrial homeostasis and alleviating pathological abnormalities. Furthermore, exogenous mitochondria were engineered with a bioactive, mitochondrial-targeting macromolecule to impart anti-oxidative and anti-inflammatory activities. The obtained multi-bioactive biotherapy exhibited significantly enhanced benefits in IVDD treatment, in terms of reversing IVDD progression and restoring structural integrity through the mtDNA/SPARC-STING signaling pathways. Overall, our engineered mitochondrial therapies hold great promise for treating IVDD and other musculoskeletal diseases linked to mitochondrial dysfunction.
椎间盘退变(IVDD)是椎间盘源性下腰痛的主要原因,对全球残疾和经济负担有重大影响。目前的治疗方法只能提供短期的疼痛缓解,而无法解决潜在的发病机制。在此,我们报告了以人髓核组织的单细胞RNA测序数据为指导的IVDD仿生治疗方法的工程设计,并使用动物模型进行了验证。深入分析揭示了线粒体功能障碍在IVDD进展过程中髓核细胞(NPCs)纤维化表型极化中的关键作用。因此,提出了线粒体移植作为一种新的治疗策略。移植的外源线粒体在病理条件下改善了NPCs的线粒体质量控制,通过内吞作用、单独分布或与内源性线粒体融合,并通过隧道纳米管转移到邻近细胞。相应地,椎间盘内线粒体移植显著延缓了大鼠穿刺诱导的IVDD进展,证明了其在维持线粒体稳态和减轻病理异常方面的有效性。此外,对外源线粒体进行了工程改造,使其带有一种具有生物活性的、靶向线粒体的大分子,以赋予抗氧化和抗炎活性。通过mtDNA/SPARC-STING信号通路,所获得的多生物活性生物疗法在IVDD治疗中表现出显著增强的益处,在逆转IVDD进展和恢复结构完整性方面。总体而言,我们设计的线粒体疗法在治疗IVDD和其他与线粒体功能障碍相关的肌肉骨骼疾病方面具有巨大潜力。
Int Immunopharmacol. 2024-4-20
J Transl Med. 2023-6-15
Research (Wash D C). 2024-4-5