Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA.
Department of Surgery, Harvard Medical School, Boston, MA, USA.
Nature. 2024 May;629(8012):660-668. doi: 10.1038/s41586-024-07340-0. Epub 2024 May 1.
Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide. Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mesenchymal stromal cells (MSCs), which makes clinical implementation complicated. The mechanisms that enable MSCs to facilitate EC engraftment remain elusive. Here we show that, under cellular stress, MSCs transfer mitochondria to ECs through tunnelling nanotubes, and that blocking this transfer impairs EC engraftment. We devised a strategy to artificially transplant mitochondria, transiently enhancing EC bioenergetics and enabling them to form functional vessels in ischaemic tissues without the support of MSCs. Notably, exogenous mitochondria did not integrate into the endogenous EC mitochondrial pool, but triggered mitophagy after internalization. Transplanted mitochondria co-localized with autophagosomes, and ablation of the PINK1-Parkin pathway negated the enhanced engraftment ability of ECs. Our findings reveal a mechanism that underlies the effects of mitochondrial transfer between mesenchymal and endothelial cells, and offer potential for a new approach for vascular cell therapy.
缺血性疾病,如严重肢体缺血和心肌梗死,影响着全球数百万人。移植内皮细胞(ECs)是血管医学中一种很有前途的治疗方法,但通常需要共移植血管周围支持细胞,如间充质基质细胞(MSCs),这使得临床实施变得复杂。使 MSCs 能够促进 EC 移植的机制仍不清楚。在这里,我们表明,在细胞应激下,MSCs 通过隧道纳米管将线粒体转移到 ECs 中,而阻断这种转移会损害 EC 的移植。我们设计了一种策略来人工移植线粒体,短暂地增强 EC 的生物能量,使它们在没有 MSCs 支持的情况下在缺血组织中形成功能性血管。值得注意的是,外源性线粒体并没有整合到内源性 EC 线粒体池中,而是在内化后引发自噬。移植的线粒体与自噬体共定位,并且 PINK1-Parkin 途径的缺失否定了 ECs 增强的移植能力。我们的发现揭示了间充质细胞和内皮细胞之间线粒体转移的作用机制,并为血管细胞治疗提供了一种新的潜在方法。