Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
ACS Nano. 2024 Mar 26;18(12):8885-8905. doi: 10.1021/acsnano.3c12163. Epub 2024 Mar 11.
As intervertebral disc degeneration (IVDD) proceeds, the dysfunctional mitochondria disrupt the viability of nucleus pulposus cells, initiating the degradation of the extracellular matrix. To date, there is a lack of effective therapies targeting the mitochondria of nucleus pulposus cells. Here, we synthesized polygallic acid-manganese (PGA-Mn) nanoparticles via self-assembly polymerization of gallic acid in an aqueous medium and introduced a mitochondrial targeting peptide (TP04) onto the nanoparticles using a Schiff base linkage, resulting in PGA-Mn-TP04 nanoparticles. With a size smaller than 50 nm, PGA-Mn-TP04 possesses pH-buffering capacity, avoiding lysosomal confinement and selectively accumulating within mitochondria through electrostatic interactions. The rapid electron exchange between manganese ions and gallic acid enhances the redox capability of PGA-Mn-TP04, effectively reducing mitochondrial damage caused by mitochondrial reactive oxygen species. Moreover, PGA-Mn-TP04 restores mitochondrial function by facilitating the fusion of mitochondria and minimizing their fission, thereby sustaining the vitality of nucleus pulposus cells. In the rat IVDD model, PGA-Mn-TP04 maintained intervertebral disc height and nucleus pulposus tissue hydration. It offers a nonoperative treatment approach for IVDD and other skeletal muscle diseases resulting from mitochondrial dysfunction, presenting an alternative to traditional surgical interventions.
随着椎间盘退变(IVDD)的进展,功能失调的线粒体破坏了髓核细胞的活力,启动了细胞外基质的降解。迄今为止,针对髓核细胞线粒体的有效治疗方法还很缺乏。在这里,我们通过在水介质中用没食子酸自组装聚合合成了聚没食子酸锰(PGA-Mn)纳米粒子,并通过席夫碱键将线粒体靶向肽(TP04)引入到纳米粒子上,得到 PGA-Mn-TP04 纳米粒子。其尺寸小于 50nm,PGA-Mn-TP04 具有 pH 缓冲能力,避免了溶酶体的限制,并通过静电相互作用选择性地积聚在线粒体中。锰离子和没食子酸之间的快速电子交换增强了 PGA-Mn-TP04 的氧化还原能力,有效地减少了由线粒体活性氧引起的线粒体损伤。此外,PGA-Mn-TP04 通过促进线粒体融合和最小化其裂变来恢复线粒体功能,从而维持髓核细胞的活力。在大鼠 IVDD 模型中,PGA-Mn-TP04 保持了椎间盘的高度和髓核组织的水合作用。它为 IVDD 和其他由线粒体功能障碍引起的骨骼肌肉疾病提供了一种非手术治疗方法,为传统的手术干预提供了一种替代方案。