Nguyen Diep Quoc Tuan, Huynh Hoang Nhut, Ven Huynh Thanh, Cao Dinh Minh Quan, Tran Anh Tu, Tran Trung Nghia
Laboratory of Laser Technology, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 72409, Vietnam.
Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc, Ho Chi Minh City 71308, Vietnam.
J Electr Bioimpedance. 2025 Mar 11;16(1):11-22. doi: 10.2478/joeb-2025-0003. eCollection 2025 Jan.
Electrical Impedance Tomography (EIT) is a non-invasive method for imaging conductivity distributions within a target area. The inverse problem associated with EIT is nonlinear and ill-posed, leading to low spatial resolution reconstructions. Iterative algorithms are widely employed to address complex inverse problems. However, current iterative methods have notable limitations, such as the arbitrary and subjective selection of initial parameters, lengthy computational times due to numerous iterations, and the generation of reconstructions that suffer from shape blurring and a lack of higher-order detail. To address these issues, this study investigates the impact of using ISTA and FISTA iterative algorithms on the image reconstruction process in EIT. It focuses on enhancing the convergence and accuracy of EIT image reconstruction by evaluating the effectiveness of these optimization algorithms when applied to regularized inverse problems, using standard regularization techniques. ISTA and FISTA were compared to the NOSER and Newton-Raphson methods and validated through simulation and experimental results. The results show that ISTA and FISTA achieve better visualization and faster convergence than conventional methods in terms of computational efficiency when solving regularized problems, achieving conductivity reconstructions with an accuracy of above 80%. The paper concludes that while ISTA and FISTA significantly enhance EIT image reconstruction performance, the quality of the reconstructed images heavily depends on the choice of regularization methods and parameters, which are crucial to the reconstruction process.
电阻抗断层成像(EIT)是一种用于对目标区域内的电导率分布进行成像的非侵入性方法。与EIT相关的逆问题是非线性且不适定的,导致重建的空间分辨率较低。迭代算法被广泛用于解决复杂的逆问题。然而,当前的迭代方法存在显著局限性,例如初始参数的选择具有随意性和主观性、由于大量迭代导致计算时间冗长,以及生成的重建图像存在形状模糊和缺乏高阶细节的问题。为了解决这些问题,本研究探讨了使用迭代收缩阈值算法(ISTA)和快速迭代收缩阈值算法(FISTA)对EIT图像重建过程的影响。它通过使用标准正则化技术评估这些优化算法应用于正则化逆问题时有效性时的有效性,着重提高EIT图像重建的收敛性和准确性。将ISTA和FISTA与非线性正交空间迭代算法(NOSER)和牛顿-拉弗森方法进行了比较,并通过模拟和实验结果进行了验证。结果表明,在解决正则化问题时,就计算效率而言,ISTA和FISTA比传统方法实现了更好的可视化和更快的收敛速度,实现了电导率重建,准确率高于80%。本文得出结论,虽然ISTA和FISTA显著提高了EIT图像重建性能,但重建图像的质量在很大程度上取决于正则化方法和参数的选择,这些对重建过程至关重要。