Suppr超能文献

用于预测皮肤恶性黑色素瘤淋巴结转移的机器学习模型的构建与验证:一项基于大人群的研究

Construction and validation of machine learning models for predicting lymph node metastasis in cutaneous malignant melanoma: a large population-based study.

作者信息

Lan Ling-Feng, Kai Yi-Long, Xu Xiao-Ling, Zhang Jun-Kun, Xu Guang-Bo, Dai Yan-Bi, Shen Yan, Lu Hua-Ya, Wang Ben

机构信息

Department of Otolaryngology, The First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Branch (The First People's Hospital of Yuhang District), Hangzhou, China.

Department of Orthopedics, Ningbo Yinzhou Second Hospital, Ningbo, China.

出版信息

Transl Cancer Res. 2025 Feb 28;14(2):706-716. doi: 10.21037/tcr-24-1672. Epub 2025 Feb 18.

Abstract

BACKGROUND

Lymph node status is essential for determining the prognosis of cutaneous malignant melanoma (CMM). This study aimed to develop a machine learning (ML) model for predicting lymph node metastases (LNM) in CMM.

METHODS

We gathered data on 6,196 patients from the Surveillance, Epidemiology, and End Results (SEER) database, including known clinicopathologic variables, using six ML algorithms, including logistic regression (LR), support vector machine (SVM), Complement Naive Bayes (CNB), Extreme Gradient Boosting (XGBoost), RandomForest (RF), and k-nearest neighbor algorithm (kNN), to predict the presence of LNM in CMM. Subsequently, we established prediction models. The utilization of the adaptive synthetic (ADASYN) method served to address the challenge posed by imbalanced data. We assessed prediction model performance in terms of average precision (AP), sensitivity, specificity, accuracy, F1 score, precision-recall curves, calibration plots, and decision curve analysis (DCA). Furthermore, employing SHapley Additive exPlanation (SHAP) analysis resulted in the creation of visualized explanations tailored to individual patients.

RESULTS

Among the 6,196 CMM cases, 19.9% (n=1,234) presented with LNM. The XGBoost model showed the best predictive performance when compared with the other algorithms (AP of 0.805). XGBoost showed that age and Breslow thickness were the two most important factors related to LNM.

CONCLUSIONS

The XGBoost model predicted LNM of CMM with a high level of precision. We hope that this model could assist surgeons in accurately evaluating surgical approaches and determining the extent of surgery, while also guiding the subsequent adjuvant therapies, thereby improving the prognosis of patients.

摘要

背景

淋巴结状态对于确定皮肤恶性黑色素瘤(CMM)的预后至关重要。本研究旨在开发一种用于预测CMM中淋巴结转移(LNM)的机器学习(ML)模型。

方法

我们从监测、流行病学和最终结果(SEER)数据库收集了6196例患者的数据,包括已知的临床病理变量,使用六种ML算法,包括逻辑回归(LR)、支持向量机(SVM)、互补朴素贝叶斯(CNB)、极端梯度提升(XGBoost)、随机森林(RF)和k近邻算法(kNN),来预测CMM中LNM的存在。随后,我们建立了预测模型。自适应合成(ADASYN)方法的使用有助于应对数据不平衡带来的挑战。我们从平均精度(AP)、敏感性、特异性、准确性、F1分数、精确召回曲线、校准图和决策曲线分析(DCA)等方面评估了预测模型的性能。此外,采用SHapley加性解释(SHAP)分析生成了针对个体患者的可视化解释。

结果

在6196例CMM病例中,19.9%(n = 1234)出现LNM。与其他算法相比,XGBoost模型表现出最佳的预测性能(AP为0.805)。XGBoost显示年龄和Breslow厚度是与LNM相关的两个最重要因素。

结论

XGBoost模型高精度地预测了CMM的LNM。我们希望该模型能够帮助外科医生准确评估手术方法并确定手术范围,同时也指导后续的辅助治疗,从而改善患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ba/11912072/2687fcaaafb2/tcr-14-02-706-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验