文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Construction and validation of machine learning models for predicting lymph node metastasis in cutaneous malignant melanoma: a large population-based study.

作者信息

Lan Ling-Feng, Kai Yi-Long, Xu Xiao-Ling, Zhang Jun-Kun, Xu Guang-Bo, Dai Yan-Bi, Shen Yan, Lu Hua-Ya, Wang Ben

机构信息

Department of Otolaryngology, The First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Branch (The First People's Hospital of Yuhang District), Hangzhou, China.

Department of Orthopedics, Ningbo Yinzhou Second Hospital, Ningbo, China.

出版信息

Transl Cancer Res. 2025 Feb 28;14(2):706-716. doi: 10.21037/tcr-24-1672. Epub 2025 Feb 18.


DOI:10.21037/tcr-24-1672
PMID:40104720
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11912072/
Abstract

BACKGROUND: Lymph node status is essential for determining the prognosis of cutaneous malignant melanoma (CMM). This study aimed to develop a machine learning (ML) model for predicting lymph node metastases (LNM) in CMM. METHODS: We gathered data on 6,196 patients from the Surveillance, Epidemiology, and End Results (SEER) database, including known clinicopathologic variables, using six ML algorithms, including logistic regression (LR), support vector machine (SVM), Complement Naive Bayes (CNB), Extreme Gradient Boosting (XGBoost), RandomForest (RF), and k-nearest neighbor algorithm (kNN), to predict the presence of LNM in CMM. Subsequently, we established prediction models. The utilization of the adaptive synthetic (ADASYN) method served to address the challenge posed by imbalanced data. We assessed prediction model performance in terms of average precision (AP), sensitivity, specificity, accuracy, F1 score, precision-recall curves, calibration plots, and decision curve analysis (DCA). Furthermore, employing SHapley Additive exPlanation (SHAP) analysis resulted in the creation of visualized explanations tailored to individual patients. RESULTS: Among the 6,196 CMM cases, 19.9% (n=1,234) presented with LNM. The XGBoost model showed the best predictive performance when compared with the other algorithms (AP of 0.805). XGBoost showed that age and Breslow thickness were the two most important factors related to LNM. CONCLUSIONS: The XGBoost model predicted LNM of CMM with a high level of precision. We hope that this model could assist surgeons in accurately evaluating surgical approaches and determining the extent of surgery, while also guiding the subsequent adjuvant therapies, thereby improving the prognosis of patients.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ba/11912072/b7956aef5074/tcr-14-02-706-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ba/11912072/2687fcaaafb2/tcr-14-02-706-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ba/11912072/c1ac9f94687e/tcr-14-02-706-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ba/11912072/1f63fcefa9f6/tcr-14-02-706-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ba/11912072/46dcc1e8d25d/tcr-14-02-706-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ba/11912072/82c2f73ff914/tcr-14-02-706-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ba/11912072/b7956aef5074/tcr-14-02-706-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ba/11912072/2687fcaaafb2/tcr-14-02-706-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ba/11912072/c1ac9f94687e/tcr-14-02-706-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ba/11912072/1f63fcefa9f6/tcr-14-02-706-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ba/11912072/46dcc1e8d25d/tcr-14-02-706-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ba/11912072/82c2f73ff914/tcr-14-02-706-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ba/11912072/b7956aef5074/tcr-14-02-706-f6.jpg

相似文献

[1]
Construction and validation of machine learning models for predicting lymph node metastasis in cutaneous malignant melanoma: a large population-based study.

Transl Cancer Res. 2025-2-28

[2]
Application of interpretable machine learning algorithms to predict distant metastasis in osteosarcoma.

Cancer Med. 2023-2

[3]
Application of an Interpretable Machine Learning Model to Predict Lymph Node Metastasis in Patients with Laryngeal Carcinoma.

J Oncol. 2022-11-12

[4]
Application of Interpretable Machine Learning Algorithm to Predict Lymph Node Metastasis in Cutaneous Malignant Melanoma.

Dermatology. 2025-4-21

[5]
A machine learning model based on ultrasound image features to assess the risk of sentinel lymph node metastasis in breast cancer patients: Applications of scikit-learn and SHAP.

Front Oncol. 2022-7-25

[6]
Prediction of lymph node metastasis in patients with breast invasive micropapillary carcinoma based on machine learning and SHapley Additive exPlanations framework.

Front Oncol. 2022-9-15

[7]
Utilizing machine learning algorithms for predicting risk factors for bone metastasis from right-sided colon carcinoma after complete mesocolic excision: a 10-year retrospective multicenter study.

Discov Oncol. 2024-9-19

[8]
Machine learning models for prediction of lymph node metastasis in patients with T1b gastric cancer.

Am J Cancer Res. 2024-8-25

[9]
Prediction of peripheral lymph node metastasis (LNM) in thyroid cancer using delta radiomics derived from enhanced CT combined with multiple machine learning algorithms.

Eur J Med Res. 2025-3-13

[10]
Construction and interpretation of weight-balanced enhanced machine learning models for predicting liver metastasis risk in colorectal cancer patients.

Discov Oncol. 2025-2-12

本文引用的文献

[1]
Age-associated imbalance in immune cell regeneration varies across individuals and arises from a distinct subset of stem cells.

Cell Mol Immunol. 2024-12

[2]
Sex-dependent effects in the aged melanoma tumor microenvironment influence invasion and resistance to targeted therapy.

Cell. 2024-10-17

[3]
Processing imbalanced medical data at the data level with assisted-reproduction data as an example.

BioData Min. 2024-9-4

[4]
Immune surveillance of senescence: potential application to age-related diseases.

Trends Cell Biol. 2025-3

[5]
Does Sex Matter? Temporal Analyses of Melanoma Trends among Men and Women Suggest Etiologic Heterogeneity.

J Invest Dermatol. 2025-1

[6]
Development and validation of a novel model to predict recurrence-free survival and melanoma-specific survival after sentinel lymph node biopsy in patients with melanoma: an international, retrospective, multicentre analysis.

Lancet Oncol. 2024-4

[7]
Risk factors for sentinel lymph node metastasis in Korean acral and non-acral melanoma patients.

Pigment Cell Melanoma Res. 2024-5

[8]
Invasive Cutaneous Melanoma: Evaluating the Prognostic Significance of Some Parameters Associated with Lymph Node Metastases.

Medicina (Kaunas). 2023-7-3

[9]
Cancer statistics, 2023.

CA Cancer J Clin. 2023-1

[10]
LASSO-based machine learning models for the prediction of central lymph node metastasis in clinically negative patients with papillary thyroid carcinoma.

Front Endocrinol (Lausanne). 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索