Suppr超能文献

利用机器学习算法预测完整结肠系膜切除术后右侧结肠癌骨转移的危险因素:一项10年回顾性多中心研究。

Utilizing machine learning algorithms for predicting risk factors for bone metastasis from right-sided colon carcinoma after complete mesocolic excision: a 10-year retrospective multicenter study.

作者信息

Liu Yuan, Liu Yuankun, Wang Shuting, Niu Sen, Wang Langyu, Xie Jiaheng, Zhao Ning, Zhao Songyun, Cheng Chao, Dai Teng

机构信息

Wuxi Medical Center of Nanjing Medical University, Wuxi, China.

Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China.

出版信息

Discov Oncol. 2024 Sep 19;15(1):463. doi: 10.1007/s12672-024-01327-z.

Abstract

BACKGROUND

Bone metastasis (BM) occurs when colon cancer cells disseminate from the primary tumor site to the skeletal system via the bloodstream or lymphatic system. The emergence of such bone metastases typically heralds a significantly poor prognosis for the patient. This study's primary aim is to develop a machine learning model to identify patients at elevated risk of bone metastasis among those with right-sided colon cancer undergoing complete mesocolonectomy (CME).

PATIENTS AND METHODS

The study cohort comprised 1,151 individuals diagnosed with right-sided colon cancer, with a subset of 73 patients presenting with bone metastases originating from the colon. We used univariate and multivariate regression analyses as well as four machine learning algorithms to screen variables for 38 characteristic variables such as patient demographic characteristics and surgical information. The study employed four distinct machine learning algorithms, namely, extreme gradient boosting (XGBoost), random forest (RF), support vector machine (SVM), and k-nearest neighbor algorithm (KNN), to develop the predictive model. Additionally, the model was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA), while Shapley additive explanation (SHAP) was utilized to visualize and analyze the model.

RESULTS

The XGBoost algorithm performed the best performance among the four prediction models. In the training set, the XGBoost algorithm had an area under curve (AUC) value of 0.973 (0.953-0.994), an accuracy of 0.925 (0.913-0.936), a sensitivity of 0.921 (0.902-0.940), and a specificity of 0.908 (0.894-0.922). In the validation set, the XGBoost algorithm had an AUC value of 0.922 (0.833-0.995), an accuracy of 0.908 (0.889-0.926), a sensitivity of 0.924 (0.873-0.975), and a specificity of 0.883 (0.810-0.956). Furthermore, the AUC value of 0.83 for the external validation set suggests that the XGBoost prediction model possesses strong extrapolation capabilities. The results of SHAP analysis identified alkaline phosphatase (ALP) levels, tumor size, invasion depth, lymph node metastasis, lung metastasis, and postoperative neutrophil-to-lymphocyte ratio (NLR) levels as significant risk factors for BM from right-sided colon cancer subsequent to CME.

CONCLUSION

The prediction model for BM from right-sided colon cancer developed using the XGBoost machine learning algorithm in this study is both highly precise and clinically valuable.

摘要

背景

当结肠癌细胞通过血液循环或淋巴系统从原发肿瘤部位扩散到骨骼系统时,就会发生骨转移(BM)。这种骨转移的出现通常预示着患者的预后极差。本研究的主要目的是开发一种机器学习模型,以识别在接受完整结肠系膜切除术(CME)的右侧结肠癌患者中骨转移风险升高的患者。

患者和方法

研究队列包括1151例被诊断为右侧结肠癌的个体,其中73例患者出现源自结肠的骨转移。我们使用单变量和多变量回归分析以及四种机器学习算法,对患者人口统计学特征和手术信息等38个特征变量进行变量筛选。该研究采用了四种不同的机器学习算法,即极端梯度提升(XGBoost)、随机森林(RF)、支持向量机(SVM)和k近邻算法(KNN)来开发预测模型。此外,使用受试者工作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)对模型进行评估,同时利用Shapley加性解释(SHAP)对模型进行可视化和分析。

结果

在四个预测模型中,XGBoost算法表现最佳。在训练集中,XGBoost算法的曲线下面积(AUC)值为0.973(0.953 - 0.994),准确率为0.925(0.913 - 0.936),灵敏度为0.921(0.902 - 0.940),特异性为0.908(0.894 - 0.922)。在验证集中,XGBoost算法的AUC值为0.922(0.833 - 0.995),准确率为0.908(0.889 - 0.926),灵敏度为0.924(0.873 - 0.975),特异性为0.883(0.810 - 0.956)。此外,外部验证集的AUC值为0.83,表明XGBoost预测模型具有很强的外推能力。SHAP分析结果确定碱性磷酸酶(ALP)水平、肿瘤大小、浸润深度、淋巴结转移、肺转移以及术后中性粒细胞与淋巴细胞比值(NLR)水平是CME后右侧结肠癌发生BM的重要危险因素。

结论

本研究使用XGBoost机器学习算法开发的右侧结肠癌BM预测模型具有很高的精度和临床价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/817d/11413306/6cb1c0f9730d/12672_2024_1327_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验