Miao Zhaohong, Zhou Jian
School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
Langmuir. 2025 Apr 1;41(12):7980-7995. doi: 10.1021/acs.langmuir.5c00001. Epub 2025 Mar 19.
Zwitterionic materials with cationic and anionic moieties in the same chain, being electrically neutral, have excellent hydrophilicity, stability, biocompatibility, and outstanding anti-biofouling performance. Because of their unique properties, zwitterionic materials are widely applied to membrane separation, drug delivery, surface coating, etc. However, what is the root of their unique properties? It is necessary to study the structure-property relationships of zwitterionic compounds to guide the design and development of zwitterionic materials. Modeling and simulation methods are considered to be efficient technologies for understanding advanced materials in principle. This Review systematically summarizes the computational exploration of zwitterionic materials in recent years. First, the classes of zwitterionic materials are summarized. Second, the different scale simulation methods are introduced briefly. To reveal the structure-property relationships of zwitterionic materials, multiscale modeling and simulation studies at different spatial and temporal scales are summarized. The study results indicated that the strong electrostatic interaction between zwitterions with water molecules promotes formation of a stable hydration layer, namely, superhydrophilicity, leading to the excellent anti-fouling properties. Finally, we offer our viewpoint on the development and application of simulation techniques on zwitterionic materials exploration in the future. This work establishes a bridge from atomic and molecular scales to mesoscopic and macroscopic scales and helps to provide an in-depth understanding of the structure-property relationships of zwitterionic materials.
两性离子材料在同一链中同时含有阳离子和阴离子部分,呈电中性,具有优异的亲水性、稳定性、生物相容性和出色的抗生物污损性能。由于其独特的性质,两性离子材料被广泛应用于膜分离、药物递送、表面涂层等领域。然而,其独特性质的根源是什么呢?有必要研究两性离子化合物的结构-性质关系,以指导两性离子材料的设计与开发。建模和模拟方法原则上被认为是理解先进材料的有效技术。本综述系统地总结了近年来对两性离子材料的计算探索。首先,总结了两性离子材料的类别。其次,简要介绍了不同尺度的模拟方法。为了揭示两性离子材料的结构-性质关系,总结了在不同空间和时间尺度上的多尺度建模和模拟研究。研究结果表明,两性离子与水分子之间强烈的静电相互作用促进了稳定水合层的形成,即超亲水性,从而导致优异的抗污性能。最后,我们对未来模拟技术在两性离子材料探索中的发展与应用提出了观点。这项工作在原子和分子尺度与介观和宏观尺度之间架起了一座桥梁,有助于深入理解两性离子材料的结构-性质关系。