Suppr超能文献

微电极阵列电刺激期间阻抗特性的预测

Prediction of impedance characteristic during electrical stimulation with microelectrode arrays.

作者信息

Erbslöh Andreas, Zimmermann Julius, Ingebrandt Sven, Mokwa Wilfried, Seidl Karsten, van Rienen Ursula, Schiele Gregor, Kokozinski Rainer

机构信息

Intelligent Embedded Systems Lab, University of Duisburg-Essen, Duisburg, Germany.

Institute of General Electrical Engineering, University of Rostock, Rostock, Germany.

出版信息

J Neural Eng. 2025 Apr 11;22(2). doi: 10.1088/1741-2552/adc2d5.

Abstract

Modern neural devices allow to interact with degenerated tissue in order to restore sensoric loss function and to suppress symptoms of neurodegenerative diseases using microelectronic arrays (MEA). They have a bidirectional interface for performing electrical stimulation to write-in new information and for recording the neural activity to read-out a neural task, e.g. movement ambitions. For both applications, the electrical impedance of the electrode-tissue interface (ETI) is crucial. However, the ETI can change during run-time due to encapsulation effects and changes of the neuronal structures. We investigated if an impedance spectrum can be reliably extracted from recordings during stimulation with microelectrode arrays.We present a measurement method for characterizing the electrical impedance spectrum during stimulation. We performed charge-controlled stimulation with a penetrating microelectrode array in an electrolyte solution. From the stimulation recordings, we extracted the impedance. Furthermore, a numerical model (digital twin) of the stimulation electrodes is established.We obtained consistent results for relevant electrochemical using electrochemical impedance spectroscopy, time-domain analysis and Fourier-transform-based impedance estimation. Moreover, the numerical simulations confirmed that the measured microelectrode had the expected properties.Our results pave the way to enable a live assessment of the impedance in future MEA-based neural devices. This will enable adaptive electrical stimulation or (re-)selection of recording electrodes by taking the actual state of the electrode into account.

摘要

现代神经装置能够与退化组织相互作用,以恢复感觉丧失功能,并利用微电子阵列(MEA)抑制神经退行性疾病的症状。它们具有双向接口,用于进行电刺激以写入新信息,以及记录神经活动以读出神经任务,例如运动意图。对于这两种应用,电极 - 组织界面(ETI)的电阻抗至关重要。然而,由于封装效应和神经元结构的变化,ETI在运行期间可能会发生变化。我们研究了在使用微电极阵列进行刺激时,是否可以从记录中可靠地提取阻抗谱。我们提出了一种用于表征刺激期间电阻抗谱的测量方法。我们在电解质溶液中使用穿透式微电极阵列进行电荷控制刺激。从刺激记录中,我们提取了阻抗。此外,建立了刺激电极的数值模型(数字孪生)。我们使用电化学阻抗谱、时域分析和基于傅里叶变换的阻抗估计,对相关电化学过程获得了一致的结果。此外,数值模拟证实了所测量的微电极具有预期的特性。我们的结果为在未来基于MEA的神经装置中实现对阻抗的实时评估铺平了道路。这将通过考虑电极的实际状态来实现自适应电刺激或(重新)选择记录电极。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验