Suppr超能文献

通过结合链置换扩增和波长选择性机器学习,用于增强金黄色葡萄球菌表面增强拉曼散射检测的活性捕获导向双金属纳米基底

Active capture-directed bimetallic nanosubstrate for enhanced SERS detection of Staphylococcus aureus by combining strand exchange amplification and wavelength-selective machine learning.

作者信息

Xu Yi, Ahmad Waqas, Chen Min, Wang Jingjing, Jiao Tianhui, Wei Jie, Chen Qingmin, Li Dong, Chen Xiaomei, Chen Quansheng

机构信息

College of Food and Biological Engineering, Jimei University, Xiamen, 361021, People's Republic of China.

College of Food and Biological Engineering, Jimei University, Xiamen, 361021, People's Republic of China.

出版信息

Biosens Bioelectron. 2025 Jun 15;278:117363. doi: 10.1016/j.bios.2025.117363. Epub 2025 Mar 10.

Abstract

Staphylococcus aureus (S. aureus) is the leading risk factor for food safety and human health. Herein, a novel wavelength-selective machine learning -driven adaptive strand exchange amplification (SEA)/SERS biosensor was developed for rapid detection of S. aureus. The study operates via three innovative routes: i) the exceptional specificity triggered through SEA of the nuc target gene (nuc T') from S. aureus, ii) anodic aluminum oxide filter membrane-supported gold and silver bimetallic nanoflowers modified with 4-ATP (Au/Ag FL@AAO-4-ATP) were prepared as SERS nanosubstrate for actively capturing the nuc T' through a nucleophilic addition reaction, and for SERS signal enhancement, and finally iii) the integration of a wavelength-selective machine learning tool for further refinement and accuracy of the S. aureus detection process. The proposed wavelength-selective machine learning-driven adaptive Au/Ag FL@AAO-4-ATP nanosubstrate administers prediction performance for the quantitative detection of S. aureus using interval combined population analysis-partial least squares (ICPA-PLS) with root mean square error of prediction and residual predictive deviation values of 0.9626 and 3.56, respectively. The effectiveness of the proposed ICPA-PLS method in real milk samples was validated by a standard fluorescent quantitative PCR method in terms of t-test with no significant differences at P = 0.05. This study offers a new avenue for rapid and straightforward detection of S. aureus, focusing on key genes. The proposed SERS/SEA/machine learning integrated platform can be adapted to other bacterial species via engineering appropriate amplification primers, thus, inspiring potential applications in food safety and biomedical research.

摘要

金黄色葡萄球菌是食品安全和人类健康的主要风险因素。在此,开发了一种新型的波长选择性机器学习驱动的自适应链交换扩增(SEA)/表面增强拉曼光谱(SERS)生物传感器,用于快速检测金黄色葡萄球菌。该研究通过三条创新途径进行:i)通过金黄色葡萄球菌的nuc靶基因(nuc T')的SEA触发的卓越特异性;ii)制备用4-氨基硫酚(4-ATP)修饰的阳极氧化铝滤膜支撑的金和银双金属纳米花(Au/Ag FL@AAO-4-ATP)作为SERS纳米底物,通过亲核加成反应主动捕获nuc T',并用于SERS信号增强;最后iii)集成波长选择性机器学习工具,以进一步优化金黄色葡萄球菌检测过程的精度。所提出的波长选择性机器学习驱动的自适应Au/Ag FL@AAO-4-ATP纳米底物使用区间组合总体分析-偏最小二乘法(ICPA-PLS)对金黄色葡萄球菌进行定量检测,预测均方根误差和残差预测偏差值分别为0.9626和3.56,具有预测性能。所提出的ICPA-PLS方法在实际牛奶样品中的有效性通过标准荧光定量PCR方法在t检验方面得到验证,在P = 0.05时无显著差异。本研究为聚焦关键基因的金黄色葡萄球菌快速直接检测提供了一条新途径。所提出的SERS/SEA/机器学习集成平台可通过设计合适的扩增引物适用于其他细菌物种,从而在食品安全和生物医学研究中激发潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验