Xu Yi, He Peihuan, Ahmad Waqas, Hassan Md Mehedi, Ali Shujat, Li Huanhuan, Chen Quansheng
School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, People's Republic of China.
Biosens Bioelectron. 2022 Aug 1;209:114240. doi: 10.1016/j.bios.2022.114240. Epub 2022 Apr 3.
Staphylococcus aureus (S. aureus) has been identified as a marker of food contamination, closely associated with human health. This work designs a sensitive and rapid bio-detection strategy for S. aureus based on hybridization chain reaction-assisted surface enhanced Raman scattering (HCR-assisted-SERS) signal amplification. In this approach, the interaction between the aptamer (Apt) and its partial complementary DNA strands (cDNA) fabricated on the surface of gold-assisted magnetic nanoparticles (Au-MNPs) and the subsequent detachment of the cDNA results in the activation of the HCR process. In the HCR, a pair of hairpin structured DNA probes (H1 and H2) with sticky ends self-assembles to form a long DNA polymer. Subsequently, the output and amplification of the SERS signal were performed by conjugating 4-ATP modified Au@Ag NPs with the obtained DNA polymer via a specific Ag-S bond, and further collected through a self-administered polydimethylsiloxane (PDMS) cone-shaped support array. The precise quantification of S. aureus was performed in the concentration range of 28 to 2.8 × 10 cfu/mL, achieving a detection limit of 0.25 cfu/mL. This strategy was further applied to S. aureus detection in spiked milk samples with good recoveries (91-102%) and the relative standard deviation (4.35-8.41%). The sensing platform also showed satisfactory validation results (p > 0.05) using the traditional plate counting method. The proposed HCR-assisted SERS probe can be extended to other foodborne pathogenic bacteria types via engineering appropriate Apt and DNA initiators, thus, inspiring widespread applications in food safety and biomedical research.
金黄色葡萄球菌已被确定为食品污染的标志物,与人类健康密切相关。本研究基于杂交链式反应辅助表面增强拉曼散射(HCR辅助-SERS)信号放大技术,设计了一种灵敏、快速的金黄色葡萄球菌生物检测策略。在该方法中,适配体(Apt)与其在金辅助磁性纳米颗粒(Au-MNPs)表面制备的部分互补DNA链(cDNA)之间的相互作用以及随后cDNA的脱离导致HCR过程的激活。在HCR中,一对带有粘性末端的发夹结构DNA探针(H1和H2)自组装形成长DNA聚合物。随后,通过将4-ATP修饰的Au@Ag NPs与所得DNA聚合物通过特定的Ag-S键共轭来实现SERS信号的输出和放大,并通过自行制备的聚二甲基硅氧烷(PDMS)锥形支撑阵列进一步收集。在28至2.8×10 cfu/mL的浓度范围内对金黄色葡萄球菌进行了精确定量,检测限达到0.25 cfu/mL。该策略进一步应用于加标牛奶样品中的金黄色葡萄球菌检测,回收率良好(91-102%),相对标准偏差为(4.35-8.41%)。使用传统平板计数法时,传感平台也显示出令人满意的验证结果(p>0.05)。所提出的HCR辅助SERS探针可以通过设计合适的Apt和DNA引发剂扩展到其他食源性病原体类型,从而在食品安全和生物医学研究中得到广泛应用。