Suppr超能文献

基于语义相关聚类域适应的组织病理学图像分类

Histopathology image classification based on semantic correlation clustering domain adaptation.

作者信息

Wang Pin, Zhang Jinhua, Li Yongming, Guo Yurou, Li Pufei, Chen Rui

机构信息

School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400030, PR China.

School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400030, PR China.

出版信息

Artif Intell Med. 2025 May;163:103110. doi: 10.1016/j.artmed.2025.103110. Epub 2025 Mar 17.

Abstract

Deep learning has been successfully applied to histopathology image classification tasks. However, the performance of deep models is data-driven, and the acquisition and annotation of pathological image samples are difficult, which limit the model's performance. Compared to whole slide images (WSI) of patients, histopathology image datasets of animal models are easier to acquire and annotate. Therefore, this paper proposes an unsupervised domain adaptation method based on semantic correlation clustering for histopathology image classification. The aim is to utilize Minmice model histopathology image dataset to achieve the classification and recognition of human WSIs. Firstly, the multi-scale fused features extracted from the source and target domains are normalized and mapped. In the new feature space, the cosine distance between class centers is used to measure the semantic correlation between categories. Then, the domain centers, class centers, and sample distributions are self-constrainedly aligned. Multi-granular information is applied to achieve cross-domain semantic correlation knowledge transfer between classes. Finally, the probabilistic heatmap is used to visualize the model's prediction results and annotate the cancerous regions in WSIs. Experimental results show that the proposed method has high classification accuracy for WSI, and the annotated result is close to manual annotation, indicating its potential for clinical applications.

摘要

深度学习已成功应用于组织病理学图像分类任务。然而,深度模型的性能是数据驱动的,病理图像样本的获取和标注困难,这限制了模型的性能。与患者的全切片图像(WSI)相比,动物模型的组织病理学图像数据集更容易获取和标注。因此,本文提出了一种基于语义相关聚类的无监督域适应方法用于组织病理学图像分类。目的是利用小鼠模型组织病理学图像数据集实现对人类WSI的分类和识别。首先,对从源域和目标域提取的多尺度融合特征进行归一化和映射。在新的特征空间中,使用类中心之间的余弦距离来衡量类别之间的语义相关性。然后,对域中心、类中心和样本分布进行自约束对齐。应用多粒度信息实现类间跨域语义相关知识转移。最后,使用概率热图可视化模型的预测结果并标注WSI中的癌性区域。实验结果表明,所提方法对WSI具有较高的分类准确率,且标注结果接近人工标注,表明其具有临床应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验