Suppr超能文献

扩散语义分割模型:一种基于联合分布的医学图像分割生成模型。

Diffusion semantic segmentation model: A generative model for medical image segmentation based on joint distribution.

作者信息

Liu Tiange, Li Jinze, Torigian Drew A, Tong Yubing, Xiong Qibing, Zhang Kaige, Udupa Jayaram K

机构信息

School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing, China.

School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei, China.

出版信息

Med Phys. 2025 Jul;52(7):e17928. doi: 10.1002/mp.17928. Epub 2025 Jun 8.

Abstract

BACKGROUND

The mainstream semantic segmentation schemes in medical image segmentation are essentially discriminative paradigms based on conditional distributions . Although efficient and straightforward, this prevalent paradigm focuses solely on extracting image features while ignoring the underlying data distribution . Therefore, the learned feature space exhibits inherent instability, which directly affects the precision of the model in delineating anatomical boundaries.

PURPOSE

This paper reformulates the semantic segmentation task as a distribution alignment problem for medical image segmentation, aiming to minimize the gap between model predictions and ground truth labels by modeling the joint distribution of the data.

METHODS

We propose a novel segmentation architecture based on joint distribution, called Denoising Semantic Segmentation Model (DSSM). We propose learning classification decision boundaries in pixel feature space and modeling joint distributions in latent feature space. Specifically, DSSM optimizes probability maps based on pixel feature classification through Bayesian posterior probabilities. To this end, we design a Feature Fusion Module (FFM) to guide the generative module in inference and provide label features for the semantic module. Furthermore, we introduce a stable Markov inference process to reduce inference offset. Finally, the joint distribution-based model is end-to-end trained in a discriminative manner, that is, maximizing , which endows DSSM with the strengths of both generative and discriminative models.

RESULTS

The image datasets utilized in this study are from different modalities, including MRI scans, x-ray images, and skin lesion photographic images, demonstrating superior performance compared to state-of-the-art (SOTA) discriminative models. Specifically, DSSM achieved a Dice coefficient of 0.8871 in MSD cardiac MRI segmentation, 0.9451 in ACDC left ventricular MRI segmentation, and 0.9647 in x-ray image segmentation. DSSM also reached 0.8731 Dice in prostate MRI segmentation. Furthermore, in the field of skin lesion segmentation, DSSM achieved a Dice score of 0.8869 on the ISIC 2018 dataset and delivered exceptional performance with 0.9421 on the PH2 dataset. Besides the Dice score, HD95, mIoU, Precision, and Recall are evaluated across the above datasets, which further demonstrate the superior performance of DSSM.

CONCLUSIONS

Our methodology enables the stabilization of the learned feature space by effectively capturing the latent feature distribution information. Experimental results demonstrate that our model considerably outperforms traditional discriminative segmentation methods across a variety of datasets from multiple modalities.

摘要

背景

医学图像分割中的主流语义分割方案本质上是基于条件分布的判别范式。尽管这种范式高效且直接,但它仅专注于提取图像特征,而忽略了潜在的数据分布。因此,学习到的特征空间表现出固有的不稳定性,这直接影响模型在描绘解剖边界时的精度。

目的

本文将语义分割任务重新表述为医学图像分割的分布对齐问题,旨在通过对数据的联合分布进行建模来最小化模型预测与真实标签之间的差距。

方法

我们提出了一种基于联合分布的新型分割架构,称为去噪语义分割模型(DSSM)。我们提出在像素特征空间中学习分类决策边界,并在潜在特征空间中对联合分布进行建模。具体而言,DSSM基于像素特征分类通过贝叶斯后验概率来优化概率图。为此,我们设计了一个特征融合模块(FFM)来在推理中指导生成模块,并为语义模块提供标签特征。此外,我们引入了一个稳定的马尔可夫推理过程以减少推理偏差。最后,基于联合分布的模型以判别方式进行端到端训练,即最大化 ,这赋予了DSSM生成模型和判别模型的优势。

结果

本研究中使用的图像数据集来自不同模态,包括MRI扫描、X射线图像和皮肤病变摄影图像,与当前最先进的(SOTA)判别模型相比表现出卓越性能。具体而言,DSSM在MSD心脏MRI分割中达到了0.8871的Dice系数,在ACDC左心室MRI分割中达到了0.9451,在X射线图像分割中达到了0.9647。DSSM在前列腺MRI分割中也达到了0.8731的Dice系数。此外,在皮肤病变分割领域,DSSM在ISIC 2018数据集上达到了0.8869的Dice分数,在PH2数据集上以0.9421的成绩表现出色。除了Dice分数外,还在上述数据集上评估了HD95、mIoU、精度和召回率,这进一步证明了DSSM的卓越性能。

结论

我们的方法通过有效捕获潜在特征分布信息实现了学习到的特征空间的稳定。实验结果表明,我们的模型在来自多种模态的各种数据集上显著优于传统的判别分割方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验