Jiang Zhennan, Chen Nianhang, Wang Hao-Tian, Tian Yungang, Du Xiaoyu, Wu Ruibo, Huang Luqi, Wang Zi-Long, Yuan Yuan
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
Plant Biotechnol J. 2025 Jun;23(6):2242-2253. doi: 10.1111/pbi.70059. Epub 2025 Mar 19.
Sugar building blocks are crucial for the chemical diversity and biological activity of secondary metabolites. UDP-dependent glycosyltransferases (UGTs) play a pivotal role in the biosynthesis of glycosides in plants by catalysing the attachment of sugar moieties to various bioactive natural products. However, the biosynthesis of oligosaccharide-chain glycosides is often limited by the narrow substrate specificity of UGTs. In this study, we identify a regio-specific β-(1,6) glycosyltransferase, UGT94BY1, from Platycodon grandiflorum. UGT94BY1 exhibits broad substrate promiscuity and can transfer up to three sugar moieties to the C6-OH position of the glucosyl group in various triterpenoids and phenolic glycosides, thereby forming β-(1,6) oligoglucoside chains. To elucidate the mechanism underlying its substrate selectivity, we determined the crystal structure of the UGT94BY1 complex with UDP at a resolution of 2.0 Å. Molecular simulations revealed that a critical structural motif, comprising residues N84-M91, S141-L155 and R179-E186, plays a key role in recognizing sugar acceptors and facilitating chain elongation. Our study unveils a powerful glycosyltransferase for β-(1,6) oligoglucoside chain biosynthesis and highlights key regions involved in substrate recognition and sugar chain extension, providing valuable insights for designing UGTs with customized substrate specificities for biotechnological applications.
糖基构建单元对于次生代谢产物的化学多样性和生物活性至关重要。UDP依赖性糖基转移酶(UGTs)在植物糖苷生物合成中发挥关键作用,通过催化糖基部分连接到各种生物活性天然产物上。然而,寡糖链糖苷的生物合成常常受到UGTs狭窄底物特异性的限制。在本研究中,我们从桔梗中鉴定出一种区域特异性β-(1,6)糖基转移酶UGT94BY1。UGT94BY1表现出广泛的底物选择性,能够将多达三个糖基部分转移到各种三萜类化合物和酚类糖苷中葡萄糖基的C6-OH位置,从而形成β-(1,6)寡葡萄糖链。为阐明其底物选择性的潜在机制,我们以2.0 Å的分辨率测定了UGT94BY1与UDP复合物的晶体结构。分子模拟显示,一个关键的结构基序,由N84-M91、S141-L155和R179-E186残基组成,在识别糖受体和促进链延长中起关键作用。我们的研究揭示了一种用于β-(1,6)寡葡萄糖链生物合成的强大糖基转移酶,并突出了参与底物识别和糖链延伸的关键区域,为设计具有定制底物特异性的UGTs用于生物技术应用提供了有价值的见解。