Suppr超能文献

基于深度学习的多拍超声心动图心脏相位检测

Deep-learning based multibeat echocardiographic cardiac phase detection.

作者信息

Cheng Hanlin, Shi Zhongqing, Qi Zhanru, Wang Xiaoxian, Guo Guanjun, Fang Aijuan, Jin Zhibin, Shan Chunjie, Du Yue, Chen Ruiyang, Qian Sunnan, Luo Shouhua, Yao Jing

机构信息

School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China.

Department of Ultrasound Medicine, The Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, China.

出版信息

Med Phys. 2025 Jun;52(6):4278-4298. doi: 10.1002/mp.17733. Epub 2025 Mar 19.

Abstract

BACKGROUND

End-to-end automatic detection of cardiac phase in multibeat echocardiograms is crucial for measuring cardiac parameters in clinical scenarios. However, existing studies face limitations due to the high cost of data annotation and collection, and time-consuming detection processes.

PURPOSE

This study introduces a novel multibeat echocardiographic cardiac phase detection network, EchoPhaseNet, to perform fast and accurate cardiac phase detection of variable-length multibeat echocardiographic sequences, with low annotation costs and limited data.

MATERIALS AND METHODS

Five echocardiographic datasets were used in this study, including a small-scale private dataset, Echo-DT (DrumTower), a medium-scale publicly available dataset, PhaseDetection, and three additional publicly available datasets: EchoNet-Dynamic, CAMUS, and EchoNet-Dynamic-MultiBeat. EchoPhaseNet and four other deep learning-based cardiac phase detection methods were trained and internally validated on the Echo-DT and PhaseDetection datasets (with sample ratios for training, validation, and testing set at 60%:20%:20% and 80%:0%:20%, respectively), and then externally validated on the other three datasets. Model performance was evaluated using GradCAM for qualitative visualization and absolute frame difference (aFD) for quantitative accuracy, with statistical significance assessed using Tukey's test and Benjamini-Hochberg correction, considering corrected p-values 0.05 as significant.

RESULTS

The annotation costs and accuracy of end-diastolic (ED) and end-systolic (ES) detection using EchoPhaseNet were compared with those of four other comparison methods. EchoPhaseNet achieves effective specific phase detections using only ED/ES labels, reducing annotation costs and making it applicable to a wider range of detection scenarios compared to all the comparison methods. On the Echo-DT dataset, EchoPhaseNet's mean aFD values for ED and ES detection in the A4C view samples were 1.08 and 1.04, respectively, significantly outperforming three comparison methods in ED detection accuracy (p-values 0.01) and comparable to the remaining one (p-values 0.05). On the PhaseDetection dataset, EchoPhaseNet's mean aFD values for ED and ES detection were 1.67 and 2.19, respectively, comparable to the detection accuracies of all four comparison methods (p-values 0.05). In addition, EchoPhaseNet showed strong generalization ability on multiple external validation datasets. After training on the small-scale Echo-DT dataset, EchoPhaseNet significantly outperformed the four comparison methods (p-values 0.01) in ED detection, achieving mean aFD values of 1.67 and 1.11 on the EchoNet-Dynamic and EchoNet-Dynamic-MultiBeat datasets, respectively. After training on the PhaseDetection dataset, EchoPhaseNet significantly outperformed the four compared methods (p-values 0.01) in ES detection on the EchoNet-Dynamic dataset, achieving mean aFD value of 2.58. EchoPhaseNet's inference time for a single 32-frame sequence segment is substantially lower than that of the four compared methods, not exceeding 8 ms on an RTX 4080 GPU using the PyTorch deep learning framework.

CONCLUSIONS

EchoPhaseNet exhibits clear advantages over existing studies in data annotation and collection costs, as well as detection speed, and is applicable to a wider range of detection scenarios. It demonstrates good practicality and promising prospects for clinical multibeat echocardiographic cardiac phase detection.

摘要

背景

在多拍超声心动图中进行心脏相位的端到端自动检测对于在临床场景中测量心脏参数至关重要。然而,由于数据标注和收集成本高昂以及检测过程耗时,现有研究面临局限性。

目的

本研究引入了一种新颖的多拍超声心动图心脏相位检测网络EchoPhaseNet,以对可变长度的多拍超声心动图序列进行快速准确的心脏相位检测,同时降低标注成本并减少数据量。

材料和方法

本研究使用了五个超声心动图数据集,包括一个小规模的私有数据集Echo-DT(鼓楼)、一个中等规模的公开可用数据集PhaseDetection以及另外三个公开可用数据集:EchoNet-Dynamic、CAMUS和EchoNet-Dynamic-MultiBeat。EchoPhaseNet和其他四种基于深度学习的心脏相位检测方法在Echo-DT和PhaseDetection数据集上进行训练和内部验证(训练、验证和测试的样本比例分别设置为60%:20%:20%和80%:0%:20%),然后在其他三个数据集上进行外部验证。使用GradCAM进行定性可视化评估模型性能,使用绝对帧差(aFD)进行定量准确性评估,使用Tukey检验和Benjamini-Hochberg校正评估统计显著性,将校正后的p值≤0.05视为具有显著性。

结果

将使用EchoPhaseNet进行舒张末期(ED)和收缩末期(ES)检测的标注成本和准确性与其他四种比较方法进行了比较。EchoPhaseNet仅使用ED/ES标签即可实现有效的特定相位检测,与所有比较方法相比,降低了标注成本并使其适用于更广泛的检测场景。在Echo-DT数据集上,EchoPhaseNet在A4C视图样本中进行ED和ES检测的平均aFD值分别为1.08和1.04,在ED检测准确性方面显著优于三种比较方法(p值≤0.01),与另一种方法相当(p值≤0.05)。在PhaseDetection数据集上,EchoPhaseNet进行ED和ES检测的平均aFD值分别为1.67和2.19,与所有四种比较方法的检测准确性相当(p值≤0.05)。此外,EchoPhaseNet在多个外部验证数据集上表现出强大的泛化能力。在小规模的Echo-DT数据集上训练后,EchoPhaseNet在ED检测方面显著优于四种比较方法(p值≤0.01),在EchoNet-Dynamic和EchoNet-Dynamic-MultiBeat数据集上的平均aFD值分别为1.67和1.11。在PhaseDetection数据集上训练后,EchoPhaseNet在EchoNet-Dynamic数据集上的ES检测方面显著优于四种比较方法(p值≤0.01),平均aFD值为2.58。EchoPhaseNet对单个32帧序列段的推理时间大大低于四种比较方法,在使用PyTorch深度学习框架的RTX 4080 GPU上不超过8毫秒。

结论

EchoPhaseNet在数据标注和收集成本以及检测速度方面比现有研究具有明显优势,并且适用于更广泛的检测场景。它在临床多拍超声心动图心脏相位检测中显示出良好的实用性和广阔的前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验