National Heart Centre Singapore, Singapore; Duke-NUS Medical School, Singapore; Saw Swee Hock School of Public Health, National University of Singapore & National University Health System, Singapore.
Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore; Us2.ai, Singapore.
Lancet Digit Health. 2022 Jan;4(1):e46-e54. doi: 10.1016/S2589-7500(21)00235-1. Epub 2021 Dec 1.
Echocardiography is the diagnostic modality for assessing cardiac systolic and diastolic function to diagnose and manage heart failure. However, manual interpretation of echocardiograms can be time consuming and subject to human error. Therefore, we developed a fully automated deep learning workflow to classify, segment, and annotate two-dimensional (2D) videos and Doppler modalities in echocardiograms.
We developed the workflow using a training dataset of 1145 echocardiograms and an internal test set of 406 echocardiograms from the prospective heart failure research platform (Asian Network for Translational Research and Cardiovascular Trials; ATTRaCT) in Asia, with previous manual tracings by expert sonographers. We validated the workflow against manual measurements in a curated dataset from Canada (Alberta Heart Failure Etiology and Analysis Research Team; HEART; n=1029 echocardiograms), a real-world dataset from Taiwan (n=31 241), the US-based EchoNet-Dynamic dataset (n=10 030), and in an independent prospective assessment of the Asian (ATTRaCT) and Canadian (Alberta HEART) datasets (n=142) with repeated independent measurements by two expert sonographers.
In the ATTRaCT test set, the automated workflow classified 2D videos and Doppler modalities with accuracies (number of correct predictions divided by the total number of predictions) ranging from 0·91 to 0·99. Segmentations of the left ventricle and left atrium were accurate, with a mean Dice similarity coefficient greater than 93% for all. In the external datasets (n=1029 to 10 030 echocardiograms used as input), automated measurements showed good agreement with locally measured values, with a mean absolute error range of 9-25 mL for left ventricular volumes, 6-10% for left ventricular ejection fraction (LVEF), and 1·8-2·2 for the ratio of the mitral inflow E wave to the tissue Doppler e' wave (E/e' ratio); and reliably classified systolic dysfunction (LVEF <40%, area under the receiver operating characteristic curve [AUC] range 0·90-0·92) and diastolic dysfunction (E/e' ratio ≥13, AUC range 0·91-0·91), with narrow 95% CIs for AUC values. Independent prospective evaluation confirmed less variance of automated compared with human expert measurements, with all individual equivalence coefficients being less than 0 for all measurements.
Deep learning algorithms can automatically annotate 2D videos and Doppler modalities with similar accuracy to manual measurements by expert sonographers. Use of an automated workflow might accelerate access, improve quality, and reduce costs in diagnosing and managing heart failure globally.
ASTAR Biomedical Research Council and ASTAR Exploit Technologies.
超声心动图是评估心脏收缩和舒张功能以诊断和管理心力衰竭的诊断方式。然而,手动解读超声心动图可能既耗时又容易出错。因此,我们开发了一种完全自动化的深度学习工作流程,用于对二维(2D)视频和超声心动图中的多普勒模式进行分类、分割和注释。
我们使用来自亚洲前瞻性心力衰竭研究平台(亚洲转化研究和心血管试验网络;ATTRaCT)的 1145 份超声心动图和内部测试集(406 份)以及之前由专家超声医师手动追踪的训练数据集开发了该工作流程。我们使用来自加拿大(艾伯塔心力衰竭病因和分析研究团队;HEART;n=1029 份超声心动图)的经编目数据集、来自台湾的真实世界数据集(n=31241 份)、基于美国的 EchoNet-Dynamic 数据集(n=10030 份)以及亚洲(ATTRaCT)和加拿大(艾伯塔省 HEART)数据集的独立前瞻性评估(n=142 份)对工作流程进行了验证,这两个数据集由两名专家超声医师进行了重复的独立测量。
在 ATTRaCT 测试集中,自动工作流程对 2D 视频和多普勒模式的分类准确率(正确预测数除以总预测数)在 0.91 至 0.99 之间。左心室和左心房的分割非常准确,所有部位的平均 Dice 相似系数均大于 93%。在外部数据集(用于输入的 1029 至 10030 份超声心动图)中,自动测量值与本地测量值具有良好的一致性,左心室容量的平均绝对误差范围为 9-25 毫升,左心室射血分数(LVEF)为 6-10%,二尖瓣流入 E 波与组织多普勒 e'波的比值(E/e' 比值)为 1.8-2.2;并可靠地分类收缩功能障碍(LVEF <40%,接受者操作特征曲线下面积 [AUC]范围 0.90-0.92)和舒张功能障碍(E/e' 比值≥13,AUC 范围 0.91-0.91),AUC 值的 95%CI 很窄。独立的前瞻性评估证实,与专家超声医师手动测量相比,自动测量的变异性更小,所有测量的个体等效系数均小于 0。
深度学习算法可以通过专家超声医师以类似于手动测量的准确性自动注释 2D 视频和多普勒模式。使用自动化工作流程可能会加速全球对心力衰竭的诊断和管理,提高质量并降低成本。
ASTAR 生物医学研究理事会和 ASTAR 技术开发。