文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

将测序方法与机器学习相结合用于儿科感染的抗菌药物敏感性测试:当前进展与未来展望。

Integrating sequencing methods with machine learning for antimicrobial susceptibility testing in pediatric infections: current advances and future insights.

作者信息

Zou Zhuan, Tang Fajuan, Qiao Lina, Wang Sisi, Zhang Haiyang

机构信息

Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China.

Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China.

出版信息

Front Microbiol. 2025 Mar 5;16:1528696. doi: 10.3389/fmicb.2025.1528696. eCollection 2025.


DOI:10.3389/fmicb.2025.1528696
PMID:40109965
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11919855/
Abstract

Antimicrobial resistance (AMR) presents a critical challenge in clinical settings, particularly among pediatric patients with life-threatening conditions such as sepsis, meningitis, and neonatal infections. The increasing prevalence of multi- and pan-resistant pathogens is strongly associated with adverse clinical outcomes. Recent technological advances in sequencing methods, including metagenomic next-generation sequencing (mNGS), Oxford Nanopore Technologies (ONT), and targeted sequencing (TS), have significantly enhanced the detection of both pathogens and their associated resistance genes. However, discrepancies between resistance gene detection and antimicrobial susceptibility testing (AST) often hinder the direct clinical application of sequencing results. These inconsistencies may arise from factors such as genetic mutations or variants in resistance genes, differences in the phenotypic expression of resistance, and the influence of environmental conditions on resistance levels, which can lead to variations in the observed resistance patterns. Machine learning (ML) provides a promising solution by integrating large-scale resistance data with sequencing outcomes, enabling more accurate predictions of pathogen drug susceptibility. This review explores the application of sequencing technologies and ML in the context of pediatric infections, with a focus on their potential to track the evolution of resistance genes and predict antibiotic susceptibility. The goal of this review is to promote the incorporation of ML-based predictions into clinical practice, thereby improving the management of AMR in pediatric populations.

摘要

抗菌药物耐药性(AMR)在临床环境中构成了严峻挑战,尤其是在患有败血症、脑膜炎和新生儿感染等危及生命疾病的儿科患者中。多重耐药和泛耐药病原体的日益流行与不良临床结局密切相关。测序方法的最新技术进展,包括宏基因组下一代测序(mNGS)、牛津纳米孔技术(ONT)和靶向测序(TS),显著提高了对病原体及其相关耐药基因的检测能力。然而,耐药基因检测与抗菌药物敏感性试验(AST)之间的差异常常阻碍测序结果的直接临床应用。这些不一致可能源于耐药基因中的基因突变或变异、耐药表型表达的差异以及环境条件对耐药水平的影响等因素,这些因素可能导致观察到的耐药模式出现变化。机器学习(ML)通过将大规模耐药数据与测序结果相结合提供了一个有前景的解决方案,能够更准确地预测病原体的药物敏感性。本综述探讨了测序技术和机器学习在儿科感染中的应用,重点关注它们追踪耐药基因演变和预测抗生素敏感性的潜力。本综述的目的是促进将基于机器学习的预测纳入临床实践,从而改善儿科人群中抗菌药物耐药性的管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59cf/11919855/d8fecc3e79b1/fmicb-16-1528696-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59cf/11919855/1a7930929e6e/fmicb-16-1528696-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59cf/11919855/c9a6fdf26093/fmicb-16-1528696-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59cf/11919855/d8fecc3e79b1/fmicb-16-1528696-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59cf/11919855/1a7930929e6e/fmicb-16-1528696-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59cf/11919855/c9a6fdf26093/fmicb-16-1528696-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59cf/11919855/d8fecc3e79b1/fmicb-16-1528696-g003.jpg

相似文献

[1]
Integrating sequencing methods with machine learning for antimicrobial susceptibility testing in pediatric infections: current advances and future insights.

Front Microbiol. 2025-3-5

[2]
Automated antimicrobial susceptibility testing and antimicrobial resistance genotyping using Illumina and Oxford Nanopore Technologies sequencing data among .

Front Microbiol. 2022-8-8

[3]
Metagenomic prediction of antimicrobial resistance in critically ill patients with lower respiratory tract infections.

Genome Med. 2022-7-12

[4]
Influence of Sequencing Technology on Pangenome-level Analysis and Detection of Antimicrobial Resistance Genes in ESKAPE Pathogens.

bioRxiv. 2025-1-10

[5]
Large-scale genomic analysis reveals significant role of insertion sequences in antimicrobial resistance of .

mBio. 2025-3-12

[6]
Performance and hypothetical clinical impact of an mNGS-based machine learning model for antimicrobial susceptibility prediction of five ESKAPEE bacteria.

Microbiol Spectr. 2025-6-3

[7]
The performance of nanopore sequencing in rapid detection of pathogens and antimicrobial resistance genes in blood cultures.

Diagn Microbiol Infect Dis. 2025-3

[8]
Novel Clinical mNGS-Based Machine Learning Model for Rapid Antimicrobial Susceptibility Testing of Acinetobacter baumannii.

J Clin Microbiol. 2023-5-23

[9]
Machine Learning Approaches for Microorganism Identification, Virulence Assessment, and Antimicrobial Susceptibility Evaluation Using DNA Sequencing Methods: A Systematic Review.

Mol Biotechnol. 2024-11-9

[10]
Rapid nanopore sequencing and predictive susceptibility testing of positive blood cultures from intensive care patients with sepsis.

Microbiol Spectr. 2024-2-6

引用本文的文献

[1]
Next generation sequencing as a panacea for antibiotic susceptibility testing: yea or nay?

Front Public Health. 2025-8-18

本文引用的文献

[1]
Molecular characteristics, risk factors, and clinical outcomes of methicillin-resistant infections among critically ill pediatric patients in Shanghai, 2016-2021.

Front Pediatr. 2024-10-17

[2]
Quantitative drug susceptibility testing for Mycobacterium tuberculosis using unassembled sequencing data and machine learning.

PLoS Comput Biol. 2024-8

[3]
Nanopore-based targeted next-generation sequencing of tissue samples for tuberculosis diagnosis.

Front Microbiol. 2024-7-3

[4]
Factors of acute respiratory infection among under-five children across sub-Saharan African countries using machine learning approaches.

Sci Rep. 2024-7-9

[5]
Clinical diagnostic value of targeted next‑generation sequencing for infectious diseases (Review).

Mol Med Rep. 2024-9

[6]
Study of the Epidemiological and Mechanistic Differences Between Carbapenem-Resistant Infections in Children and Adults.

Infect Drug Resist. 2024-6-25

[7]
Detection of hidden antibiotic resistance through real-time genomics.

Nat Commun. 2024-6-28

[8]
Rapid inference of antibiotic resistance and susceptibility for Klebsiella pneumoniae by clinical shotgun metagenomic sequencing.

Int J Antimicrob Agents. 2024-8

[9]
Integrating DNA/RNA microbe detection and host response for accurate diagnosis, treatment and prognosis of childhood infectious meningitis and encephalitis.

J Transl Med. 2024-6-20

[10]
Predictive modeling of mortality in carbapenem-resistant bloodstream infections using machine learning.

J Investig Med. 2024-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索