基于宏基因组下一代测序(mNGS)的机器学习模型对五种ESKAPEE细菌进行抗菌药物敏感性预测的性能及假设的临床影响
Performance and hypothetical clinical impact of an mNGS-based machine learning model for antimicrobial susceptibility prediction of five ESKAPEE bacteria.
作者信息
Li Yaoguang, Liu Sizhen, Han Peng, Lei Jun, Wang Huifen, Zhu Weiwei, Dong Zihui, Zhang Yize, Jiang Zhi, Zheng Beiwen, Rao Guanhua, Yu Zujiang, Li Ang
机构信息
Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Department of Infectious Disease, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
出版信息
Microbiol Spectr. 2025 Jun 3;13(6):e0259224. doi: 10.1128/spectrum.02592-24. Epub 2025 Apr 17.
UNLABELLED
Antimicrobial resistance is an escalating global health crisis, underscoring the urgent need for timely and targeted therapies to ensure effective clinical treatment. We developed a machine learning model based on metagenomic next-generation sequencing (mNGS) for rapid antimicrobial susceptibility prediction (mNGS-based AST), which was tailored to five ESKAPEE bacteria: , , , and . However, the clinical utility remained unvalidated. Assuming that mNGS-based AST results were obtained during clinical management, we assessed its clinical utility using data from a previous observational cohort study of clinical mNGS applications. We collected the data from 114 patients infected with five ESKAPEE bacteria from 07/2021 to 03/2023 and incorporated the sequencing data into the model. We evaluated the performance and hypothetical impact of the method by comparing its results and therapy recommendations with those based on traditional culture-based AST. The primary outcome was the performance of mNGS-based AST ( = 113 strains). mNGS-based AST displayed an overall accuracy of 93.84% and shorter turnaround time (1.12 ± 0.33 days vs 2.81 ± 0.57 days for culture-based AST, = -27.31, < 0.05). The secondary outcomes included the proportion of patients who could benefit from mNGS-based AST. It could allow earlier and suitable antibacterial adjustments in 32.05% of culture-positive patients (25/78) and offer actionable antimicrobial susceptibility results in 16.67% of culture-negative cases (6/36). mNGS-based AST offers a promising approach for individualized antibacterial therapy.
IMPORTANCE
Metagenomic next-generation sequencing (mNGS)-based antimicrobial susceptibility prediction (AST) is a novel method for predicting the antimicrobial susceptibility of ESKAPEE bacteria using a machine learning approach and short-read sequencing data. Assuming that mNGS-based AST results were obtained during clinical management, it could significantly reduce turnaround time while maintaining a high level of accuracy, allowing for earlier therapeutic adjustments for patients. Furthermore, mNGS-based AST can be integrated with clinical mNGS to maximize the utility of short-read data without substantial cost increases. This study demonstrates the potential of mNGS-based AST for precise, individualized antibacterial selection and highlights its broader applicability in enhancing clinical antimicrobial use for various infections.
未标注
抗菌药物耐药性是一场不断升级的全球健康危机,凸显了及时采取针对性治疗以确保有效临床治疗的迫切需求。我们开发了一种基于宏基因组下一代测序(mNGS)的机器学习模型,用于快速预测抗菌药物敏感性(基于mNGS的AST),该模型针对五种ESKAPEE细菌进行了定制: 、 、 、 和 。然而,其临床实用性仍未得到验证。假设在临床管理过程中获得了基于mNGS的AST结果,我们使用先前一项关于临床mNGS应用的观察性队列研究的数据评估了其临床实用性。我们收集了2021年7月至2023年3月期间114例感染五种ESKAPEE细菌的患者的数据,并将测序数据纳入模型。我们通过将该方法的结果和治疗建议与基于传统培养的AST的结果和建议进行比较,评估了该方法的性能和假设影响。主要结果是基于mNGS的AST的性能( = 113株菌株)。基于mNGS的AST总体准确率为93.84%,周转时间更短(基于mNGS的AST为1.12±0.33天,基于培养的AST为2.81±0.57天, = -27.31, < 0.05)。次要结果包括可从基于mNGS的AST中获益的患者比例。它可以使32.05%的培养阳性患者(25/78)更早且适当地调整抗菌药物,并在16.67%的培养阴性病例(6/36)中提供可采取行动的抗菌药物敏感性结果。基于mNGS的AST为个体化抗菌治疗提供了一种有前景的方法。
重要性
基于宏基因组下一代测序(mNGS)的抗菌药物敏感性预测(AST)是一种使用机器学习方法和短读长测序数据预测ESKAPEE细菌抗菌药物敏感性的新方法。假设在临床管理过程中获得了基于mNGS的AST结果,它可以显著缩短周转时间,同时保持较高的准确性,从而允许为患者更早地调整治疗方案。此外,基于mNGS的AST可以与临床mNGS整合,在不大幅增加成本的情况下最大化短读长数据的效用。本研究证明了基于mNGS的AST在精确、个体化抗菌药物选择方面的潜力,并突出了其在增强各种感染的临床抗菌药物使用方面的更广泛适用性。