Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
Genskey Medical Technology Co., Ltd., Beijing, China.
J Clin Microbiol. 2023 May 23;61(5):e0180522. doi: 10.1128/jcm.01805-22. Epub 2023 Apr 6.
Multidrug-resistant (MDR) bacteria are important public health problems. Antibiotic susceptibility testing (AST) currently uses time-consuming culture-based procedures, which cause treatment delays and increased mortality. We developed a machine learning model using Acinetobacter baumannii as an example to explore a fast AST approach using metagenomic next-generation sequencing (mNGS) data. The key genetic characteristics associated with antimicrobial resistance (AMR) were selected through a least absolute shrinkage and selection operator (LASSO) regression model based on 1,942 A. baumannii genomes. The mNGS-AST prediction model was accordingly established, validated, and optimized using read simulation sequences of clinical isolates. Clinical specimens were collected to evaluate the performance of the model retrospectively and prospectively. We identified 20, 31, 24, and 3 AMR signatures of A. baumannii for imipenem, ceftazidime, cefepime, and ciprofloxacin, respectively. Four mNGS-AST models had a positive predictive value (PPV) greater than 0.97 for 230 retrospective samples, with negative predictive values (NPVs) of 100% (imipenem), 86.67% (ceftazidime), 86.67% (cefepime), and 90.91% (ciprofloxacin). Our method classified antibacterial phenotypes with an accuracy of 97.65% for imipenem, 96.57% for ceftazidime, 97.64% for cefepime, and 98.36% for ciprofloxacin. The average reporting time of mNGS-based AST was 19.1 h, in contrast to the 63.3 h for culture-based AST, thus yielding a significant reduction of 44.3 h. mNGS-AST prediction results coincided 100% with the phenotypic AST results when testing 50 prospective samples. The mNGS-based model could be used as a rapid genotypic AST approach to identify A. baumannii and predict resistance and susceptibility to antibacterials and could be applicable to other pathogens and facilitate rational antimicrobial usage.
多药耐药(MDR)细菌是重要的公共卫生问题。抗生素药敏试验(AST)目前使用耗时的基于培养的程序,这会导致治疗延误和死亡率增加。我们以鲍曼不动杆菌为例,开发了一种机器学习模型,探索使用宏基因组下一代测序(mNGS)数据的快速 AST 方法。基于 1942 株鲍曼不动杆菌基因组,通过最小绝对收缩和选择算子(LASSO)回归模型选择与抗菌药物耐药性(AMR)相关的关键遗传特征。相应地建立、验证和优化了 mNGS-AST 预测模型,使用临床分离株的读模拟序列。收集临床标本进行回顾性和前瞻性评估模型性能。我们确定了 20、31、24 和 3 个鲍曼不动杆菌对亚胺培南、头孢他啶、头孢吡肟和环丙沙星的 AMR 特征。对于 230 个回顾性样本,四个 mNGS-AST 模型的阳性预测值(PPV)大于 0.97,阴性预测值(NPV)为 100%(亚胺培南)、86.67%(头孢他啶)、86.67%(头孢吡肟)和 90.91%(环丙沙星)。我们的方法对亚胺培南的抗菌表型分类准确性为 97.65%,头孢他啶为 96.57%,头孢吡肟为 97.64%,环丙沙星为 98.36%。基于 mNGS 的 AST 的平均报告时间为 19.1 小时,而基于培养的 AST 为 63.3 小时,因此显著减少了 44.3 小时。当测试 50 个前瞻性样本时,mNGS 基于 AST 的预测结果与表型 AST 结果完全吻合。该 mNGS 模型可作为一种快速的基于基因型的 AST 方法,用于鉴定鲍曼不动杆菌,并预测对抗菌药物的耐药性和敏感性,也可适用于其他病原体,有助于合理使用抗菌药物。