Suppr超能文献

使用机理模型和机器学习模型预测德克萨斯州玉米中的黄曲霉毒素污染爆发情况。

Prediction of aflatoxin contamination outbreaks in Texas corn using mechanistic and machine learning models.

作者信息

Castano-Duque Lina, Avila Angela, Mack Brian M, Winzeler H Edwin, Blackstock Joshua M, Lebar Matthew D, Moore Geromy G, Owens Phillip Ray, Mehl Hillary L, Su Jianzhong, Lindsay James, Rajasekaran Kanniah

机构信息

USDA, Agriculture Research Service, Southern Regional Research Center, New Orleans, LA, United States.

Department of Mathematics, University of Texas, Arlington, TX, United States.

出版信息

Front Microbiol. 2025 Mar 5;16:1528997. doi: 10.3389/fmicb.2025.1528997. eCollection 2025.

Abstract

Aflatoxins are carcinogenic and mutagenic mycotoxins that contaminate food and feed. The objective of our research is to predict aflatoxin outbreaks in Texas-grown maize using dynamic geospatial data from remote sensing satellites, soil properties data, and meteorological data by an ensemble of models. We developed three model pipelines: two included mechanistic models that use weekly aflatoxin risk indexes (ARIs) as inputs, and one included a weather-centric model; all three models incorporated soil properties as inputs. For the mechanistic-dependent models, ARIs were weighted based on a maize phenological model that used satellite-acquired normalized difference vegetation index (NDVI) data to predict maize planting dates for each growing season on a county basis. For aflatoxin outbreak predictions, we trained, tested and validated gradient boosting and neural network models using inputs of ARIs or weather, soil properties, and county geodynamic latitude and longitude references. Our findings indicated that between the two ARI-mechanistic models evaluated (AFLA-MAIZE or Ratkowsky), the best performing was the Ratkowsky-ARI neural network (nnet) model, with an accuracy of 73%, sensitivity of 71% and specificity of 74%. Texas has significant geographical variability in ARI and ARI-hotspot responses due to the diversity of agroecological zones (hot-dry, hot-humid, mixed-dry and mixed-humid) that result in a wide variation of maize growth and development. Our Ratkowsky-ARI nnet model identified a positive correlation between aflatoxin outbreaks and prevalence of ARI hot-spots in the hot-humid areas of Texas. In these areas, temperature, precipitation and relative humidity in March and October were positively correlated with high aflatoxin contamination events. We found a positive correlation between aflatoxin outbreaks and soil pH in hot-dry and hot-humid regions and minimum saturated hydraulic conductivity in mixed-dry regions. Conversely, there was a negative relationship between aflatoxin outbreaks and maximum soil organic matter (hot-dry region), and calcium carbonate (hot-dry, and mixed-dry). It is likely soil fungal communities are more diverse, and plants are healthier in soils with high organic matter content, thereby reducing the risk of aflatoxin outbreaks. Our results demonstrate that intricate relationships between soil hydrological parameters, fungal communities and plant health should be carefully considered by Texas corn growers for aflatoxin mitigation strategies.

摘要

黄曲霉毒素是污染食品和饲料的致癌及致突变霉菌毒素。我们研究的目的是通过一系列模型,利用来自遥感卫星的动态地理空间数据、土壤特性数据和气象数据,预测德克萨斯州种植玉米中的黄曲霉毒素爆发情况。我们开发了三条模型管道:两条包含以每周黄曲霉毒素风险指数(ARI)为输入的机理模型,一条包含以天气为中心的模型;所有三个模型都将土壤特性作为输入。对于依赖机理的模型,ARI根据一个玉米物候模型进行加权,该模型使用卫星获取的归一化植被指数(NDVI)数据,按县预测每个生长季节的玉米种植日期。对于黄曲霉毒素爆发预测,我们使用ARI或天气、土壤特性以及县地球动力学纬度和经度参考作为输入,对梯度提升和神经网络模型进行了训练、测试和验证。我们的研究结果表明,在评估的两个ARI机理模型(AFLA - MAIZE或Ratkowsky)中,表现最佳的是Ratkowsky - ARI神经网络(nnet)模型,准确率为73%,灵敏度为71%,特异性为74%。由于农业生态区(炎热干燥、炎热潮湿、混合干燥和混合潮湿)的多样性,德克萨斯州在ARI和ARI热点响应方面存在显著的地理差异,这导致玉米生长发育差异很大。我们的Ratkowsky - ARI nnet模型确定了德克萨斯州炎热潮湿地区黄曲霉毒素爆发与ARI热点流行之间存在正相关。在这些地区,3月和10月的温度、降水和相对湿度与高黄曲霉毒素污染事件呈正相关。我们发现炎热干燥和炎热潮湿地区的黄曲霉毒素爆发与土壤pH值以及混合干燥地区的最小饱和导水率之间存在正相关。相反,黄曲霉毒素爆发与最大土壤有机质(炎热干燥地区)以及碳酸钙(炎热干燥和混合干燥地区)之间存在负相关。土壤真菌群落可能在高有机质含量的土壤中更加多样,植物也更健康,从而降低了黄曲霉毒素爆发的风险。我们的结果表明,德克萨斯州的玉米种植者在制定黄曲霉毒素缓解策略时,应仔细考虑土壤水文参数、真菌群落和植物健康之间的复杂关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07b6/11919900/e4689587c422/fmicb-16-1528997-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验