Suppr超能文献

整合单细胞分析揭示膀胱癌中与二硫化物诱导的细胞程序性坏死相关lncRNAs的调控网络:构建预后模型并预测治疗反应

Integrated single-cell analysis reveals the regulatory network of disulfidptosis-related lncRNAs in bladder cancer: constructing a prognostic model and predicting treatment response.

作者信息

Xiao Jiafu, Liu Wuhao, Gong Jianxin, Lai Weifeng, Luo Neng, He Yingfan, Zou Junrong, He Zhihua

机构信息

The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China.

Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.

出版信息

Front Oncol. 2025 Mar 5;15:1527036. doi: 10.3389/fonc.2025.1527036. eCollection 2025.

Abstract

BACKGROUND

Disulfidptosis is a newly discovered form of cell death, and long non-coding RNAs (lncRNAs) play a crucial role in tumor cell growth, migration, recurrence, and drug resistance, particularly in bladder cancer (BLCA). This study aims to investigate disulfidptosis-related lncRNAs (DRLs) as potential prognostic markers for BLCA patients.

METHODS

Utilizing single-cell sequencing data, RNA sequencing data, and corresponding clinical information sourced from the GEO and TCGA databases, this study conducted cell annotation and intercellular communication analyses to identify differentially expressed disulfide death-related genes (DRGs). Subsequently, Pearson correlation and Cox regression analyses were employed to discern DRLs that correlate with overall survival. A prognostic model was constructed through LASSO regression analysis based on DRLs, complemented by multivariate Cox regression analysis. The performance of this model was rigorously evaluated using Kaplan-Meier analysis, receiver operating characteristic (ROC) curves, and area under the ROC curve (AUC). Furthermore, this investigation delved into the potential signaling pathways, immune status, tumor mutation burden (TMB), and responses to anticancer therapies associated with varying prognoses in patients with BLCA.

RESULTS

We identified twelve differentially expressed DRGs and elucidated their corresponding intercellular communication relationships. Notably, epithelial cells function as ligands, signaling to other cell types, with the interactions between epithelial cells and both monocytes and endothelial cells exhibiting the strongest connectivity. This study identified six DRLs in BLCA-namely, C1RL-AS1, GK-AS1, AC134349.1, AC104785.1, AC011092.3, and AC009951.6, and constructed a nomogram to improve the predictive accuracy of the model. The DRL features demonstrated significant associations with various clinical variables, diverse immune landscapes, and drug sensitivity profiles in BLCA patients. Furthermore, RT-qPCR validation confirmed the aberrant expression levels of these DRLs in BLCA tissues, affirming the potential of DRL characteristics as prognostic biomarkers.

CONCLUSION

We established a DRLs model that serves as a predictive tool for the prognosis of BLCA patients, as well as for assessing tumor mutation burden, immune cell infiltration, and responses to immunotherapy and targeted therapies. Collectively, this study contributes valuable insights toward advancing precision medicine within the context of BLCA.

摘要

背景

二硫化物诱导的细胞焦亡是一种新发现的细胞死亡形式,长链非编码RNA(lncRNA)在肿瘤细胞的生长、迁移、复发和耐药性中起着关键作用,尤其是在膀胱癌(BLCA)中。本研究旨在探究与二硫化物诱导的细胞焦亡相关的lncRNA(DRL)作为BLCA患者潜在的预后标志物。

方法

利用来自GEO和TCGA数据库的单细胞测序数据、RNA测序数据及相应的临床信息,本研究进行了细胞注释和细胞间通讯分析,以鉴定差异表达的二硫化物死亡相关基因(DRG)。随后,采用Pearson相关性分析和Cox回归分析来识别与总生存期相关的DRL。基于DRL通过LASSO回归分析构建预后模型,并辅以多变量Cox回归分析。使用Kaplan-Meier分析、受试者工作特征(ROC)曲线和ROC曲线下面积(AUC)对该模型的性能进行了严格评估。此外,本研究还深入探讨了与BLCA患者不同预后相关的潜在信号通路、免疫状态、肿瘤突变负担(TMB)以及对抗癌治疗的反应。

结果

我们鉴定出12个差异表达的DRG,并阐明了它们相应的细胞间通讯关系。值得注意的是,上皮细胞作为配体向其他细胞类型发出信号,上皮细胞与单核细胞和内皮细胞之间的相互作用表现出最强的连通性。本研究在BLCA中鉴定出6个DRL,即C1RL-AS1、GK-AS1、AC134349.1、AC104785.1、AC011092.3和AC009951.6,并构建了列线图以提高模型的预测准确性。DRL特征与BLCA患者的各种临床变量、不同的免疫格局和药物敏感性谱显著相关。此外,RT-qPCR验证证实了这些DRL在BLCA组织中的异常表达水平,肯定了DRL特征作为预后生物标志物的潜力。

结论

我们建立了一个DRL模型,可作为BLCA患者预后的预测工具,以及评估肿瘤突变负担、免疫细胞浸润和对免疫治疗及靶向治疗反应的工具。总体而言,本研究为在BLCA背景下推进精准医学提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e31/11919679/0d99dda2fcce/fonc-15-1527036-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验