Suppr超能文献

拥抱基础模型以推动科学发现。

Embracing Foundation Models for Advancing Scientific Discovery.

作者信息

Guo Sikun, Shariatmadari Amir Hassan, Xiong Guangzhi, Zhang Aidong

机构信息

Department of Computer Science, University of Virginia, Charlottesville, USA.

出版信息

Proc IEEE Int Conf Big Data. 2024 Dec;2024:1746-1755. doi: 10.1109/bigdata62323.2024.10825618.

Abstract

Machine learning foundation models, particularly large language models (LLMs) such as GPT-4o, have revolutionized traditional applications in computer vision and natural language processing, marking a significant shift in recent years. Building on these advancements, recent efforts have explored the potential of foundation models in hypothesis generation, highlighting their possibility in aiding human researchers in scientific discovery. In this paper, we envision a future where academia increasingly integrates foundation models to accelerate and enhance the process of scientific discovery. Motivated by potential application scenarios of foundation models in scientific research, our vision is anchored in a central question: How can we accelerate scientific discovery with the aid of foundation models? To address this overarching question, we raise two key challenges that need to be addressed: (1) how to effectively harness the parametric knowledge embedded in foundation models to propel scientific discovery? and (2) how to develop rigorous yet scalable methods to evaluate the effectiveness of foundation models in supporting scientific research? To tackle these two challenges, we propose our approaches, termed knowledge-grounded Chain-of-Idea (KG-CoI) hypothesis generation and IdeaBench - Benchmarking LLM hypothesis generators in a customizable manner. Through addressing these challenges, we outline our vision in hope to inspire new ideas and innovations in harnessing foundation models for advancing scientific discovery, paving the way for a new era of research collaboration between humans and artificial intelligence.

摘要

机器学习基础模型,特别是像GPT-4o这样的大型语言模型(LLMs),已经彻底改变了计算机视觉和自然语言处理中的传统应用,标志着近年来的重大转变。基于这些进展,最近的努力探索了基础模型在假设生成方面的潜力,凸显了它们在协助人类研究人员进行科学发现方面的可能性。在本文中,我们设想了一个未来,学术界越来越多地整合基础模型以加速和增强科学发现的过程。受基础模型在科学研究中的潜在应用场景的推动,我们的愿景基于一个核心问题:我们如何借助基础模型加速科学发现?为了解决这个首要问题,我们提出了两个需要解决的关键挑战:(1)如何有效利用基础模型中嵌入的参数知识来推动科学发现?以及(2)如何开发严格且可扩展的方法来评估基础模型在支持科学研究方面的有效性?为了应对这两个挑战,我们提出了我们的方法,称为基于知识的思想链(KG-CoI)假设生成和IdeaBench——以可定制的方式对大型语言模型假设生成器进行基准测试。通过应对这些挑战,我们勾勒出我们的愿景,希望能激发在利用基础模型推进科学发现方面的新想法和创新,为人类与人工智能之间的研究合作新时代铺平道路。

相似文献

1
Embracing Foundation Models for Advancing Scientific Discovery.拥抱基础模型以推动科学发现。
Proc IEEE Int Conf Big Data. 2024 Dec;2024:1746-1755. doi: 10.1109/bigdata62323.2024.10825618.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验