Suppr超能文献

PrPSeg:用于全景肾脏病理分割的通用命题学习

PrPSeg: Universal Proposition Learning for Panoramic Renal Pathology Segmentation.

作者信息

Deng Ruining, Liu Quan, Cui Can, Yao Tianyuan, Yue Jialin, Xiong Juming, Yu Lining, Wu Yifei, Yin Mengmeng, Wang Yu, Zhao Shilin, Tang Yucheng, Yang Haichun, Huo Yuankai

机构信息

Vanderbilt University.

Vanderbilt Univeristy Medical Center.

出版信息

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2024 Jun;2024:11736-11746. doi: 10.1109/cvpr52733.2024.01115. Epub 2024 Sep 16.

Abstract

Understanding the anatomy of renal pathology is crucial for advancing disease diagnostics, treatment evaluation, and clinical research. The complex kidney system comprises various components across multiple levels, including regions (cortex, medulla), functional units (glomeruli, tubules), and cells (podocytes, mesangial cells in glomerulus). Prior studies have predominantly overlooked the intricate spatial interrelations among objects from clinical knowledge. In this research, we introduce a novel universal proposition learning approach, called panoramic renal pathology segmentation (PrPSeg), designed to segment comprehensively panoramic structures within kidney by integrating extensive knowledge of kidney anatomy. In this paper, we propose (1) the design of a comprehensive universal proposition matrix for renal pathology, facilitating the incorporation of classification and spatial relationships into the segmentation process; (2) a token-based dynamic head single network architecture, with the improvement of the partial label image segmentation and capability for future data enlargement; and (3) an anatomy loss function, quantifying the inter-object relationships across the kidney.

摘要

了解肾脏病理学的解剖结构对于推进疾病诊断、治疗评估和临床研究至关重要。复杂的肾脏系统由多个层次的各种组件组成,包括区域(皮质、髓质)、功能单位(肾小球、肾小管)和细胞(足细胞、肾小球系膜细胞)。先前的研究主要忽略了临床知识中物体之间复杂的空间相互关系。在本研究中,我们引入了一种新颖的通用命题学习方法,称为全景肾脏病理分割(PrPSeg),旨在通过整合肾脏解剖学的广泛知识来全面分割肾脏内的全景结构。在本文中,我们提出了:(1)设计一个用于肾脏病理学的综合通用命题矩阵,便于将分类和空间关系纳入分割过程;(2)一种基于令牌的动态头部单网络架构,改进了部分标签图像分割并具备未来数据扩展的能力;(3)一种解剖学损失函数,量化肾脏内物体间的关系。

相似文献

1
PrPSeg: Universal Proposition Learning for Panoramic Renal Pathology Segmentation.PrPSeg:用于全景肾脏病理分割的通用命题学习
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2024 Jun;2024:11736-11746. doi: 10.1109/cvpr52733.2024.01115. Epub 2024 Sep 16.
2
HATs: Hierarchical Adaptive Taxonomy Segmentation for Panoramic Pathology Image Analysis.HATs:用于全景病理图像分析的分层自适应分类法分割
Med Image Comput Comput Assist Interv. 2024 Oct;15004:155-166. doi: 10.1007/978-3-031-72083-3_15. Epub 2024 Oct 14.
8
Segmentation of Glomeruli Within Trichrome Images Using Deep Learning.使用深度学习对三色图像中的肾小球进行分割。
Kidney Int Rep. 2019 Apr 15;4(7):955-962. doi: 10.1016/j.ekir.2019.04.008. eCollection 2019 Jul.

引用本文的文献

1
Simplified Artificial Intelligence Terminology for Pathologists.面向病理学家的简化人工智能术语
Diagnostics (Basel). 2025 Jul 3;15(13):1699. doi: 10.3390/diagnostics15131699.
2
HATs: Hierarchical Adaptive Taxonomy Segmentation for Panoramic Pathology Image Analysis.HATs:用于全景病理图像分析的分层自适应分类法分割
Med Image Comput Comput Assist Interv. 2024 Oct;15004:155-166. doi: 10.1007/978-3-031-72083-3_15. Epub 2024 Oct 14.

本文引用的文献

7
Building robust pathology image analyses with uncertainty quantification.利用不确定性量化构建稳健的病理学图像分析。
Comput Methods Programs Biomed. 2021 Sep;208:106291. doi: 10.1016/j.cmpb.2021.106291. Epub 2021 Jul 24.
9
Automated assessment of glomerulosclerosis and tubular atrophy using deep learning.使用深度学习自动评估肾小球硬化和肾小管萎缩。
Comput Med Imaging Graph. 2021 Jun;90:101930. doi: 10.1016/j.compmedimag.2021.101930. Epub 2021 May 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验