Deng Ruining, Liu Quan, Cui Can, Yao Tianyuan, Yue Jialin, Xiong Juming, Yu Lining, Wu Yifei, Yin Mengmeng, Wang Yu, Zhao Shilin, Tang Yucheng, Yang Haichun, Huo Yuankai
Vanderbilt University.
Vanderbilt Univeristy Medical Center.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2024 Jun;2024:11736-11746. doi: 10.1109/cvpr52733.2024.01115. Epub 2024 Sep 16.
Understanding the anatomy of renal pathology is crucial for advancing disease diagnostics, treatment evaluation, and clinical research. The complex kidney system comprises various components across multiple levels, including regions (cortex, medulla), functional units (glomeruli, tubules), and cells (podocytes, mesangial cells in glomerulus). Prior studies have predominantly overlooked the intricate spatial interrelations among objects from clinical knowledge. In this research, we introduce a novel universal proposition learning approach, called panoramic renal pathology segmentation (PrPSeg), designed to segment comprehensively panoramic structures within kidney by integrating extensive knowledge of kidney anatomy. In this paper, we propose (1) the design of a comprehensive universal proposition matrix for renal pathology, facilitating the incorporation of classification and spatial relationships into the segmentation process; (2) a token-based dynamic head single network architecture, with the improvement of the partial label image segmentation and capability for future data enlargement; and (3) an anatomy loss function, quantifying the inter-object relationships across the kidney.
了解肾脏病理学的解剖结构对于推进疾病诊断、治疗评估和临床研究至关重要。复杂的肾脏系统由多个层次的各种组件组成,包括区域(皮质、髓质)、功能单位(肾小球、肾小管)和细胞(足细胞、肾小球系膜细胞)。先前的研究主要忽略了临床知识中物体之间复杂的空间相互关系。在本研究中,我们引入了一种新颖的通用命题学习方法,称为全景肾脏病理分割(PrPSeg),旨在通过整合肾脏解剖学的广泛知识来全面分割肾脏内的全景结构。在本文中,我们提出了:(1)设计一个用于肾脏病理学的综合通用命题矩阵,便于将分类和空间关系纳入分割过程;(2)一种基于令牌的动态头部单网络架构,改进了部分标签图像分割并具备未来数据扩展的能力;(3)一种解剖学损失函数,量化肾脏内物体间的关系。