Suppr超能文献

结直肠癌预后风险模型的建立及其与癌症干细胞和免疫细胞浸润的相关性

Development of a prognostic risk model for colorectal cancer and association of the prognostic model with cancer stem cell and immune cell infiltration.

作者信息

Zhang Jian, Ambe Peter C, Shaukat Aasma

机构信息

Department of Clinical Laboratory, Benxi Iron and Steel General Hospital, Benxi, China.

Department of Surgery II, Witten/Herdecke University, Witten, Germany.

出版信息

J Gastrointest Oncol. 2025 Feb 28;16(1):77-91. doi: 10.21037/jgo-2024-985. Epub 2025 Feb 26.

Abstract

BACKGROUND

The development of a prognostic model for patients with colorectal cancer (CRC) can facilitate the assessment of patient survival and the effectiveness of clinical treatments. A reasonable prognostic model can provide a basis for individualized treatment, prognostic risk stratification, and subsequent therapy for CRC patients. The aim of our study was to construct a prognostic model for patients with CRC using sequencing data derived from The Cancer Genome Atlas (TCGA) database.

METHODS

Sequencing data of paracancerous tissues (n=51) and CRC samples (n=647) were downloaded from the TCGA database. Least absolute shrinkage and selection operator (LASSO) and Cox regression analyses were employed to identify prognostic factors. A restricted cubic spline (RCS) model was used to assess the nonlinear relationship between risk score and poor overall survival (OS). The Genomics of Drug Sensitivity in Cancer (GDSC) database was accessed to evaluate the correlation between the prognostic model's risk score and drug sensitivity. The single-sample gene set enrichment analysis (ssGSEA), estimate, and CIBERSORT algorithms were applied to quantify the association between prognostic genes and immune cell infiltration in CRC.

RESULTS

Our findings revealed that six genes, including Niemann-Pick C1-like 1 () [hazard ratio (HR) =1.53; 95% confidence interval (CI): 1.08-2.17; P=0.02], glucagon-like peptide 2 receptor () (HR =0.68; 95% CI: 0.48-0.97; P=0.04), solute carrier family 8 member A3 () (HR =0.67; 95% CI: 0.47-0.96; P=0.03), alpha-1-microglobulin/bikunin precursor () (HR =0.64; 95% CI: 0.45-0.91; P=0.01), single-pass membrane protein with coiled-coil domains 2 () (HR =0.68; 95% CI: 0.48-0.97; P=0.03), and tetratricopeptide repeat domain 16 () (HR =1.55; 95% CI: 1.09-2.20; P=0.02) function as independent prognostic factors for CRC. Based on these six genes, the developed prognostic assessment model identified a strong association between high risk score and poor OS (HR =2.43; 95% CI: 1.67-3.53; P<0.001) in patients with CRC. Furthermore, the analysis revealed a nonlinear relationship (P<0.001) between continuous variation in risk score and the risk of poor OS. Additionally, specific genes included in the prognostic model were found to be strongly associated with cancer stem cell and immune cell infiltration in CRC.

CONCLUSIONS

We developed a prognostic risk model incorporating a six-gene panel for patients with CRC. Our analysis revealed a nonlinear relationship between this prognostic model and OS in patients with CRC. A high risk score was associated with poor prognosis, indicating that the adverse outcomes observed in patients with CRC may be influenced by cancer stem cell and immune cell infiltration. Our model provides a promising predictive method for the prognosis of CRC patients, but it still needs to be validated in a larger sample size.

摘要

背景

结直肠癌(CRC)患者预后模型的开发有助于评估患者生存情况及临床治疗效果。合理的预后模型可为CRC患者的个体化治疗、预后风险分层及后续治疗提供依据。本研究旨在利用来自癌症基因组图谱(TCGA)数据库的测序数据构建CRC患者的预后模型。

方法

从TCGA数据库下载癌旁组织(n = 51)和CRC样本(n = 647)的测序数据。采用最小绝对收缩和选择算子(LASSO)及Cox回归分析来识别预后因素。使用受限立方样条(RCS)模型评估风险评分与总体生存(OS)不良之间的非线性关系。访问癌症药物敏感性基因组学(GDSC)数据库以评估预后模型的风险评分与药物敏感性之间的相关性。应用单样本基因集富集分析(ssGSEA)、估计和CIBERSORT算法来量化预后基因与CRC中免疫细胞浸润之间的关联。

结果

我们的研究结果显示,包括尼曼 - 皮克C1样1(NPC1L1)[风险比(HR)= 1.53;95%置信区间(CI):1.08 - 2.17;P = 0.02]、胰高血糖素样肽2受体(GLP2R)(HR = 0.68;95% CI:0.48 - 0.97;P = 0.04)、溶质载体家族8成员A3(SLC8A3)(HR = 0.67;95% CI:0.47 - 0.96;P = 0.03)、α-1-微球蛋白/比基尼前体(AMBP)(HR = 0.64;95% CI:0.45 - 0.91;P = 0.01)、具有卷曲螺旋结构域的单次跨膜蛋白2(TMCC2)(HR = 0.68;95% CI:0.48 - 0.97;P = 0.03)和四肽重复结构域16(TTC16)(HR = 1.55;95% CI:1.09 - 2.20;P = 0.02)在内的六个基因是CRC的独立预后因素。基于这六个基因,所开发的预后评估模型在CRC患者中确定了高风险评分与不良OS之间的强关联(HR = 2.43;95% CI:1.67 - 3.53;P < 0.001)。此外,分析揭示了风险评分的连续变化与不良OS风险之间的非线性关系(P < 0.001)。另外,发现预后模型中包含的特定基因与CRC中的癌症干细胞和免疫细胞浸润密切相关。

结论

我们为CRC患者开发了一种包含六个基因的预后风险模型。我们的分析揭示了该预后模型与CRC患者OS之间的非线性关系。高风险评分与预后不良相关,表明CRC患者中观察到的不良结局可能受癌症干细胞和免疫细胞浸润的影响。我们的模型为CRC患者的预后提供了一种有前景的预测方法,但仍需在更大样本量中进行验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6554/11921271/be24cff87347/jgo-16-01-77-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验