Suppr超能文献

通过基于网络的矩阵对向量回归评估高通量结构神经影像预测指标对全脑功能连接组结果的影响。

Evaluating the effects of high-throughput structural neuroimaging predictors on whole-brain functional connectome outcomes via network-based matrix-on-vector regression.

作者信息

Lu Tong, Zhang Yuan, Lyzinski Vince, Bi Chuan, Kochunov Peter, Hong Elliot, Chen Shuo

机构信息

Department of Mathematics, University of Maryland, College Park, MD 20742, United States.

Department of Statistics, The Ohio State University, Columbus, OH 43210, United States.

出版信息

Biometrics. 2025 Jan 7;81(1). doi: 10.1093/biomtc/ujaf027.

Abstract

The joint analysis of multimodal neuroimaging data is vital in brain research, revealing complex interactions between brain structures and functions. Our study is motivated by the analysis of a vast dataset of brain functional connectivity (FC) and multimodal structural imaging (SI) features from the UK Biobank. Specifically, we aim to investigate the effects of SI features, such as white matter microstructure integrity (WMMI) and cortical thickness, on the whole-brain functional connectome network. This analysis is inherently challenging due to the extensive structural-functional associations and the intricate network patterns present in multimodal high-dimensional neuroimaging data. To bridge methodological gaps, we developed a novel multi-level sub-graph extraction method (dense bipartite with nested unipartite graph) within a matrix(network)-on-vector regression model. This method identifies subsets of spatially specific SI features that intensely and systematically influence FC sub-networks, while effectively suppressing false positives in large-scale datasets. Applying our method to a multimodal neuroimaging dataset of 4242 participants ffrom the UK Biobank, we evaluated the effects of whole-brain WMMI and cortical thickness on resting-state FC. Our findings indicate that the WMMI in corticospinal tracts and inferior cerebellar peduncle significantly affect functional connections of sensorimotor, salience, and executive sub-networks, with an average correlation of 0.81 ($p < 0.001$).

摘要

多模态神经影像数据的联合分析在脑研究中至关重要,它揭示了脑结构与功能之间的复杂相互作用。我们的研究源于对英国生物银行中大量脑功能连接(FC)和多模态结构成像(SI)特征数据集的分析。具体而言,我们旨在研究诸如白质微观结构完整性(WMMI)和皮质厚度等SI特征对全脑功能连接组网络的影响。由于多模态高维神经影像数据中存在广泛的结构 - 功能关联和复杂的网络模式,这种分析具有内在的挑战性。为了弥合方法学差距,我们在矩阵(网络)对向量回归模型中开发了一种新颖的多层次子图提取方法(密集二分嵌套单分图)。该方法识别出在空间上特定的SI特征子集,这些子集强烈且系统地影响FC子网,同时有效抑制大规模数据集中的假阳性。将我们的方法应用于来自英国生物银行的4242名参与者的多模态神经影像数据集,我们评估了全脑WMMI和皮质厚度对静息态FC的影响。我们的研究结果表明,皮质脊髓束和小脑下脚的WMMI显著影响感觉运动、突显和执行子网的功能连接,平均相关性为0.81($p < 0.001$)。

相似文献

9

本文引用的文献

6
L2RM: Low-rank Linear Regression Models for High-dimensional Matrix Responses.L2RM:用于高维矩阵响应的低秩线性回归模型
J Am Stat Assoc. 2020 Apr 30;115(529):403-424. doi: 10.1080/01621459.2018.1555092. Epub 2019 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验