Suppr超能文献

吸烟复发的机器学习:种族差异和电子烟吸食特征对既往吸烟者的影响

Machine Learning of Smoking Relapse: the Role of Racial Differences and E-Cigarette Vaping Characteristics on Former Smokers.

作者信息

Dai Hongying Daisy, Qiu Fang, Dai Ran, Cheng Xiaoyue

机构信息

College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA.

Department of Mathematical and Statistical Sciences, University of Nebraska Omaha, Omaha, NE, USA.

出版信息

J Racial Ethn Health Disparities. 2025 Mar 21. doi: 10.1007/s40615-025-02385-x.

Abstract

BACKGROUND

Machine learning models can help identify multifaceted factors influencing tobacco use transitions. A random forest model is developed to predict smoking relapse, focusing on racial differences and vaping characteristics.

METHODS

Data are drawn from the Population Assessment of Tobacco and Health (PATH) study adult interview files. Former combustible cigarette smokers at baseline (Wave 5) were followed up 1 year later (Wave 6). Predictors (n = 100) include a wide range of social demographics, psychosocial factors, health status, tobacco and substance use behaviors, and vaping characteristics.

RESULTS

Among 4693 former smokers at baseline, 4.4% relapsed to smoking within 4 years. Random forest models achieved high prediction accuracies across racial groups, with area under the curve (AUCs) of 0.77 for Whites, 0.88 for Blacks, and 0.70 for Hispanics. Quit history (i.e., recent vs. long-term quitters) was one of the top predictors across all racial and ethnic groups. Tobacco addiction was one of the top predictors among White and Hispanic former smokers but not among their Black and other race counterparts. Marijuana use was one of the top predictors for Blacks but not for other racial and ethnic individuals. Vaping status predicted relapse across all groups, but the importance of vaping characteristics differed. E-cigarette nicotine concentration levels and e-cigarette devices ranked higher for Whites and Hispanics than for Blacks and Others.

CONCLUSIONS

The findings reveal notable racial differences in smoking relapse predictors, along with distinct roles of vaping characteristics across racial groups. Unique social, behavioral, and health factors are crucial for improving smoking cessation outcomes.

摘要

背景

机器学习模型有助于识别影响烟草使用转变的多方面因素。开发了一种随机森林模型来预测吸烟复发情况,重点关注种族差异和电子烟特征。

方法

数据取自烟草与健康人口评估(PATH)研究的成人访谈文件。对基线时(第5波)的前可燃香烟吸烟者在1年后(第6波)进行随访。预测因素(n = 100)包括广泛的社会人口统计学、心理社会因素、健康状况、烟草和物质使用行为以及电子烟特征。

结果

在基线时的4693名前吸烟者中,4.4%在4年内复吸。随机森林模型在各个种族群体中都取得了较高的预测准确率,白人的曲线下面积(AUC)为0.77,黑人的为0.88,西班牙裔的为0.70。戒烟历史(即近期戒烟者与长期戒烟者)是所有种族和族裔群体中最重要的预测因素之一。烟草成瘾是白人和西班牙裔前吸烟者中最重要的预测因素之一,但在黑人和其他种族的前吸烟者中并非如此。大麻使用是黑人中最重要的预测因素之一,但在其他种族和族裔个体中并非如此。电子烟使用状况在所有群体中都能预测复发,但电子烟特征的重要性有所不同。电子烟尼古丁浓度水平和电子烟设备在白人和西班牙裔中比在黑人和其他群体中排名更高。

结论

研究结果揭示了吸烟复发预测因素中显著的种族差异,以及不同种族群体中电子烟特征的不同作用。独特的社会、行为和健康因素对于改善戒烟结果至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验