Suppr超能文献

一种用于生物植入物的受贝类启发的仿生微结构设计:增强载银抗菌涂层的防护并促进骨整合。

A shellfish-inspired bionic microstructure design for biological implants: Enhancing protection of antibacterial silver-loaded coatings and promoting osseointegration.

作者信息

Liang Jionghong, Chen Aiyi, Wu Ming, Tang Xiaolong, Feng Haixing, Liu Jiangwen, Xie Guie

机构信息

State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, 510006, PR China.

Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510182, PR China.

出版信息

J Mech Behav Biomed Mater. 2025 Jul;167:106963. doi: 10.1016/j.jmbbm.2025.106963. Epub 2025 Feb 26.

Abstract

Implants incorporating multi-level micro-nano structures and antibacterial coatings offer a promising approach to overcoming the shortcomings of titanium and its alloys in stimulating bone growth and preventing bacterial infections. Silver ions have been identified as promising antibacterial agents. However, silver-loaded surface coatings are susceptible to damage from direct friction, and excessive release of silver ions can lead to cytotoxicity, thereby limiting their practical application. Inspired by the wear-resistant surface structure of natural shellfish, this study developed a biomimetic micro/nano multi-level structure on the titanium alloy (TC4) surfaces. The structure incorporated a biomimetic microgroove structure (BMS) with alkaline heat treatment (AH) of sodium titanate and chitosan/silver (CS/Ag) micro-nanostructured coatings (BMS/AH/CS/Ag). The microstructural armor effectively reduced external mechanical friction, safeguarding the coatings from damage. Compared to the unstructured sample, the biomimetic micro-groove armor group with a large micro-groove angle (θ) exhibited significantly reduced wear volume and only a marginal decrease of 1.86% in inhibition against Staphylococcus aureus (S. aureus) post-wear, highlighting the protective effect of this microstructure on the coating. The outstanding improvement was primarily attributed to the increased micro-groove angle, which enhanced the stability of the microstructure and effectively mitigated the friction. Additionally, the biomimetic micro-nano multi-level structure and coating have shown a significant ability to improve the bioactivity for the implant, promoting the adhesion, proliferation, collagen secretion, and extracellular matrix mineralization of human mesenchymal stem cells (hMSCs), which suggests the potential for enhanced osteogenic differentiation and indicates that this method can effectively improve the clinical performance of the implant.

摘要

植入物结合多级微纳结构和抗菌涂层为克服钛及其合金在促进骨生长和预防细菌感染方面的缺点提供了一种有前景的方法。银离子已被确认为有前景的抗菌剂。然而,负载银的表面涂层易受直接摩擦的损伤,银离子的过度释放会导致细胞毒性,从而限制了它们的实际应用。受天然贝类耐磨表面结构的启发,本研究在钛合金(TC4)表面开发了一种仿生微/纳多级结构。该结构结合了仿生微槽结构(BMS)以及钛酸钠和壳聚糖/银(CS/Ag)微纳结构涂层的碱热处理(AH)(BMS/AH/CS/Ag)。这种微结构防护层有效地减少了外部机械摩擦,保护涂层不受损伤。与无结构样品相比,具有大微槽角度(θ)的仿生微槽防护层组磨损体积显著减小,磨损后对金黄色葡萄球菌(S. aureus)的抑制率仅略有下降1.86%,突出了这种微结构对涂层的保护作用。这种显著的改善主要归因于微槽角度的增加,这增强了微结构的稳定性并有效减轻了摩擦。此外,仿生微纳多级结构和涂层已显示出显著提高植入物生物活性的能力,促进人间充质干细胞(hMSCs)的粘附、增殖、胶原蛋白分泌和细胞外基质矿化,这表明其具有增强成骨分化的潜力,并表明该方法可有效改善植入物的临床性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验