Liu Xueyu, Shi Guangze, Wang Rui, Lai Yexin, Zhang Jianan, Han Weixia, Lei Min, Li Ming, Zhou Xiaoshuang, Wu Yongfei, Wang Chen, Zheng Wen
College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China.
School of Data Science, University of Science and Technology of China, Hefei, 450011, China.
Med Image Anal. 2025 May;102:103550. doi: 10.1016/j.media.2025.103550. Epub 2025 Mar 18.
Medical image segmentation frequently encounters high annotation costs and challenges in task adaptation. While visual foundation models have shown promise in natural image segmentation, automatically generating high-quality prompts for class-agnostic segmentation of medical images remains a significant practical challenge. To address these challenges, we present Segment Any Tissue (SAT), an innovative, training-free framework designed to automatically prompt the class-agnostic visual foundation model for the segmentation of medical images with only a one-shot reference. SAT leverages the robust feature-matching capabilities of a pretrained foundation model to construct distance metrics in the feature space. By integrating these with distance metrics in the physical space, SAT establishes a dual-space cyclic prompt engineering approach for automatic prompt generation, optimization, and evaluation. Subsequently, SAT utilizes a class-agnostic foundation segmentation model with the generated prompt scheme to obtain segmentation results. Additionally, we extend the one-shot framework by incorporating multiple reference images to construct an ensemble SAT, further enhancing segmentation performance. SAT has been validated on six public and private medical segmentation tasks, capturing both macroscopic and microscopic perspectives across multiple dimensions. In the ablation experiments, automatic prompt selection enabled SAT to effectively handle tissues of various sizes, while also validating the effectiveness of each component. The comparative experiments show that SAT is comparable to, or even exceeds, some fully supervised methods. It also demonstrates superior performance compared to existing one-shot methods. In summary, SAT requires only a single pixel-level annotated reference image to perform tissue segmentation across various medical images in a training-free manner. This not only significantly reduces the annotation costs of applying foundational models to the medical field but also enhances task transferability, providing a foundation for the clinical application of intelligent medicine. Our source code is available at https://github.com/SnowRain510/Segment-Any-Tissue.
医学图像分割在任务适配中经常面临高标注成本和挑战。虽然视觉基础模型在自然图像分割中已显示出潜力,但为医学图像的类别无关分割自动生成高质量提示仍然是一个重大的实际挑战。为应对这些挑战,我们提出了任意组织分割(SAT),这是一个创新的、无需训练的框架,旨在仅通过一次参考就自动提示类别无关的视觉基础模型对医学图像进行分割。SAT利用预训练基础模型强大的特征匹配能力在特征空间中构建距离度量。通过将这些与物理空间中的距离度量相结合,SAT建立了一种双空间循环提示工程方法,用于自动提示生成、优化和评估。随后,SAT使用具有生成提示方案的类别无关基础分割模型来获得分割结果。此外,我们通过合并多个参考图像扩展了一次参考框架,构建了一个集成的SAT,进一步提高了分割性能。SAT已在六个公共和私人医学分割任务上得到验证,涵盖多个维度的宏观和微观视角。在消融实验中,自动提示选择使SAT能够有效处理各种大小的组织,同时也验证了每个组件的有效性。比较实验表明,SAT与一些全监督方法相当,甚至超过了它们。与现有的一次参考方法相比,它也表现出卓越的性能。总之,SAT仅需要一个像素级标注的参考图像,就能以无需训练的方式对各种医学图像进行组织分割。这不仅显著降低了将基础模型应用于医学领域的标注成本,还提高了任务可迁移性,为智能医学的临床应用奠定了基础。我们的源代码可在https://github.com/SnowRain510/Segment-Any-Tissue获取。