Wu Junde, Wang Ziyue, Hong Mingxuan, Ji Wei, Fu Huazhu, Xu Yanwu, Xu Min, Jin Yueming
Department of Biomedical Engineering, National University of Singapore, Singapore.
Department of Electrical and Computer Engineering, National University of Singapore, Singapore.
Med Image Anal. 2025 May;102:103547. doi: 10.1016/j.media.2025.103547. Epub 2025 Mar 19.
The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation due to its impressive capabilities in various segmentation tasks and its prompt-based interface. However, recent studies and individual experiments have shown that SAM underperforms in medical image segmentation due to the lack of medical-specific knowledge. This raises the question of how to enhance SAM's segmentation capability for medical images. We propose the Medical SAM Adapter (Med-SA), which is one of the first methods to integrate SAM into medical image segmentation. Med-SA uses a light yet effective adaptation technique instead of fine-tuning the SAM model, incorporating domain-specific medical knowledge into the segmentation model. We also propose Space-Depth Transpose (SD-Trans) to adapt 2D SAM to 3D medical images and Hyper-Prompting Adapter (HyP-Adpt) to achieve prompt-conditioned adaptation. Comprehensive evaluation experiments on 17 medical image segmentation tasks across various modalities demonstrate the superior performance of Med-SA while updating only 2% of the SAM parameters (13M). Our code is released at https://github.com/KidsWithTokens/Medical-SAM-Adapter.
段任意模型(SAM)最近在图像分割领域受到欢迎,这得益于其在各种分割任务中的出色能力以及基于提示的界面。然而,最近的研究和个别实验表明,由于缺乏医学特定知识,SAM在医学图像分割方面表现不佳。这就引出了一个问题,即如何提高SAM对医学图像的分割能力。我们提出了医学SAM适配器(Med-SA),它是将SAM集成到医学图像分割中的首批方法之一。Med-SA使用一种轻量级但有效的适应技术,而不是对SAM模型进行微调,将特定领域的医学知识融入到分割模型中。我们还提出了空间深度转置(SD-Trans),以将二维SAM适配到三维医学图像,以及超提示适配器(HyP-Adpt),以实现基于提示的适应。在跨各种模态的17个医学图像分割任务上进行的综合评估实验表明,Med-SA在仅更新2%的SAM参数(1300万)的情况下具有卓越性能。我们的代码发布在https://github.com/KidsWithTokens/Medical-SAM-Adapter 。