Suppr超能文献

用于预测和优化软组织肉瘤治疗的功能性组合精准医学

Functional combinatorial precision medicine for predicting and optimizing soft tissue sarcoma treatments.

作者信息

Chan Sharon Pei Yi, Rashid Masturah Bte Mohd Abdul, Lim Jhin Jieh, Goh Janice Jia Ni, Wong Wai Yee, Hooi Lissa, Ismail Nur Nadiah, Luo Baiwen, Chen Benjamin Jieming, Noor Nur Fazlin Bte Mohamed, Phua Brandon Xuan Ming, Villanueva Andre, Sam Xin Xiu, Ong Chin-Ann Johnny, Chia Claramae Shulyn, Abidin Suraya Zainul, Yong Ming-Hui, Kumar Krishan, Ooi London Lucien, Tay Timothy Kwang Yong, Woo Xing Yi, Toh Tan Boon, Yang Valerie Shiwen, Chow Edward Kai-Hua

机构信息

Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01 Centre for Translational Medicine, Singapore, 117599, Republic of Singapore.

KYAN Technologies, 1 Research Link, #05-45, Singapore, 117604, Republic of Singapore.

出版信息

NPJ Precis Oncol. 2025 Mar 22;9(1):83. doi: 10.1038/s41698-025-00851-7.

Abstract

Soft tissue sarcomas (STS) are rare, heterogeneous tumors with poor survival outcomes, primarily due to reliance on cytotoxic chemotherapy and lack of targeted therapies. Given the uniquely individualized nature of STS, we hypothesized that the ex vivo drug sensitivity platform, quadratic phenotypic optimization platform (QPOP), can predict treatment response and enhance combination therapy design for STS. Using QPOP, we screened 45 primary STS patient samples, and showed improved or concordant patient outcomes that are attributable to QPOP predictions. From a panel of approved and investigational agents, QPOP identified AZD5153 (BET inhibitor) and pazopanib (multi-kinase blocker) as the most effective combination with superior efficacy compared to standard regimens. Validation in a panel of established patient lines and in vivo models supported its synergistic interaction, accompanied by repressed oncogenic MYC and related pathways. These findings provide preliminary clinical evidence for QPOP to predict STS treatment outcomes and guide the development of novel therapeutic strategies for STS patients.

摘要

软组织肉瘤(STS)是一种罕见的异质性肿瘤,生存预后较差,主要原因是依赖细胞毒性化疗且缺乏靶向治疗。鉴于STS具有独特的个体特性,我们推测体外药物敏感性平台——二次表型优化平台(QPOP)能够预测治疗反应,并加强STS的联合治疗方案设计。我们使用QPOP筛选了45份原发性STS患者样本,结果显示,QPOP预测使患者预后得到改善或预后一致。在一组已批准和正在研究的药物中,QPOP确定AZD5153(溴结构域和额外末端结构域(BET)抑制剂)和帕唑帕尼(多激酶阻断剂)为最有效的联合用药,与标准方案相比疗效更佳。在一组已建立的患者细胞系和体内模型中进行的验证支持了其协同作用,同时致癌性MYC及相关信号通路受到抑制。这些发现为QPOP预测STS治疗结果及指导STS患者新治疗策略的开发提供了初步临床证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0c3/11929909/16e877ec0eac/41698_2025_851_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验