Im Gwang-Bum, Lee Jae Gyeong, Lim Hosub, Lee Jae-Won, Park Hyun Su, Kim Yongju, Asad Nauman, Kim Hak-Rin, Wie Jeong Jae, Bhang Suk Ho
School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
Adv Healthc Mater. 2025 Jun;14(15):e2403229. doi: 10.1002/adhm.202403229. Epub 2025 Mar 24.
Replicating the complex mechanical forces of muscle movement and fluid flow in in vitro cell culture systems is crucial for understanding cell differentiation and development. However, previous research focused on cell differentiation on static micro/nanotextures without a force field or flat 2-dimensional substrates under a continuous in-plane mechanical force. In this study, cell differentiation is reported using a spatial geometric platform that can periodically modulate complex mechanical forces through a custom-made soft pneumatic device (SPD) to mimic the interfaces between periosteum and interstitial fluid. To elucidate fluidic dynamics and cell fates relevant to bone physiology, the platform exhibited distinct functional responses based on mechanical force levels: low mechanotransduction induced mesenchymal stem/progenitor cells differentiation into osteoprogenitor cells (≈1.5-fold increase in osteo-differentiation), while high mechanotransduction resulted in structural disruptions resembling cell detachment without protein degradation (≈2-fold increase in effective cell detachment). Numerical simulations of SPD elucidated the principal mechanical components for programmable cell differentiation and detachment by deconvoluting the in-plane and out-of-plane mechanical forces of the SPD complex mode. This study offers comprehensive and novel insights into the correlation between mechanical forces and cell differentiation, recovery, and injury in organisms.
在体外细胞培养系统中复制肌肉运动和流体流动的复杂机械力对于理解细胞分化和发育至关重要。然而,先前的研究集中在没有力场的静态微/纳米纹理上的细胞分化,或者是在连续平面内机械力作用下的平坦二维基质上的细胞分化。在本研究中,报道了使用一种空间几何平台进行细胞分化,该平台可以通过定制的软气动装置(SPD)周期性地调节复杂的机械力,以模拟骨膜和组织液之间的界面。为了阐明与骨生理学相关的流体动力学和细胞命运,该平台基于机械力水平表现出不同的功能反应:低机械转导诱导间充质干/祖细胞分化为成骨祖细胞(成骨分化增加约1.5倍),而高机械转导导致类似于细胞脱离的结构破坏但无蛋白质降解(有效细胞脱离增加约2倍)。SPD的数值模拟通过对SPD复杂模式的平面内和平面外机械力进行反卷积,阐明了可编程细胞分化和脱离的主要机械成分。这项研究为生物体中机械力与细胞分化、恢复和损伤之间的相关性提供了全面而新颖的见解。