Suppr超能文献

通过麻醉学中人工智能驱动的排班系统提高医生满意度和患者安全

Enhancing Physician Satisfaction and Patient Safety Through an Artificial Intelligence-Driven Scheduling System in Anesthesiology.

作者信息

Sumrall William D, Oury Jakob V, Gilly George M

机构信息

Department of Anesthesiology, Ochsner Clinic Foundation, New Orleans, LA.

The University of Queensland Medical School, Ochsner Clinical School, New Orleans, LA.

出版信息

Ochsner J. 2025 Spring;25(1):44-49. doi: 10.31486/toj.24.0104.

Abstract

BACKGROUND

Overcoming challenges to effective clinical practice depends on finding dynamic solutions to issues such as physician burnout and patient safety. This study evaluated the impact of an artificial intelligence (AI)-driven scheduling system on physician burnout and patient safety, using intraoperative transitions of care as an operative metric for patient safety.

METHODS

In May 2019, the Department of Anesthesiology at Ochsner Health in New Orleans, Louisiana, implemented an AI-driven scheduling system called Lightning Bolt Scheduling (PerfectServe, Inc). Utilizing an idealized design framework, the department steering committee analyzed 12 months of historic operating room data and developed more than 400 scheduling rules to optimize staffing. The scheduling rules, representing the steering committee's new work model, were provided as inputs into Lightning Bolt Scheduling, which then used combinatorial optimization to recommend an ideal staff schedule. Preimplementation and postimplementation data were collected on physician satisfaction, vacation approval rates, and intraoperative transitions of care.

RESULTS

Six months postimplementation, physician satisfaction scores and vacation approvals increased, reflecting improved work-life balance, schedule flexibility, and decreased symptoms of burnout. Additionally, 1,072 fewer handoffs occurred, equating to 71.5 fewer adverse events and a savings of approximately $335,550 in health care costs during the 21 months after implementation.

CONCLUSION

Our study findings underscore the potential of data-driven scheduling systems to enhance physician well-being and patient safety, thereby promoting continuous improvement and adaptability in health care operations.

摘要

背景

克服有效临床实践中的挑战取决于找到解决诸如医生职业倦怠和患者安全等问题的动态解决方案。本研究使用术中护理转接作为患者安全的一项操作指标,评估了人工智能(AI)驱动的排班系统对医生职业倦怠和患者安全的影响。

方法

2019年5月,路易斯安那州新奥尔良市奥施纳健康中心麻醉科实施了一个名为“闪电排班”(PerfectServe公司)的人工智能驱动排班系统。利用理想化设计框架,科室指导委员会分析了12个月的历史手术室数据,并制定了400多条排班规则以优化人员配置。这些代表指导委员会新工作模式的排班规则被作为输入提供给“闪电排班”系统,该系统随后使用组合优化来推荐理想的人员排班表。收集了实施前和实施后关于医生满意度、休假批准率以及术中护理转接的数据。

结果

实施后六个月,医生满意度得分和休假批准率提高,这反映出工作与生活平衡得到改善、排班灵活性提高以及职业倦怠症状减轻。此外,实施后21个月内,交接次数减少了1072次,相当于不良事件减少71.5起,节省了约335,550美元的医疗费用。

结论

我们的研究结果强调了数据驱动的排班系统在提高医生福祉和患者安全方面的潜力,从而促进医疗保健运营中的持续改进和适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dee/11924975/1495bd2cefde/toj-24-0104-figure1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验