Zhou Weili, Ruan Hongtao, Zhu Lihua, Chen Shunqiang, Yang Muyi
Department of Radiology, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China.
ACS Omega. 2025 Mar 8;10(10):10230-10250. doi: 10.1021/acsomega.4c09586. eCollection 2025 Mar 18.
the sophisticated cellular heterogeneity of cell populations in glioblastoma (GBM) has been a key factor influencing tumor progression and response to therapy. The lack of more precise stratification based on cellular differentiation status poses a great challenge to therapeutic strategies.
harnessing the bulk multiomics and single-nucleus RNA sequencing data available from the National Center for Biotechnology Information (NCBI) and The Cancer Genome Atlas (TCGA) Program repositories, we developed a novel and accurate GBM risk classification using an ensemble consensus clustering approach based on the junction of prognosis and trajectory analysis. Comprehensive cluster labeling and multiomics data characterization were also performed.
a novel GBM stratification model was constructed using 45 malignant cell fate genes: (a) energy metabolism-enhanced-type GBM; (b) invasion-enhanced-type GBM; (c) invasion-attenuated-type GBM; and (d) glycolysis-dominant energy metabolism-enhanced-type GBM. The biological plausibility of the model was verified through a range of comprehensive analyses of multiomics data, showing that cases with invasion-attenuated-type were the best prognosis and energy metabolism-enhanced-type the poorest.
the study has uncovered GBM complex cellular heterogeneity and a differentiated hierarchy of cell populations underlying tumorigenesis. This precise stratification system provided implications for further studies of individual therapies.
胶质母细胞瘤(GBM)中细胞群体复杂的细胞异质性一直是影响肿瘤进展和治疗反应的关键因素。基于细胞分化状态缺乏更精确的分层给治疗策略带来了巨大挑战。
利用可从美国国立生物技术信息中心(NCBI)和癌症基因组图谱(TCGA)项目存储库获得的大量多组学和单核RNA测序数据,我们基于预后和轨迹分析的结合,采用集成共识聚类方法开发了一种新颖且准确的GBM风险分类。还进行了全面的聚类标记和多组学数据表征。
使用45个恶性细胞命运基因构建了一种新颖的GBM分层模型:(a)能量代谢增强型GBM;(b)侵袭增强型GBM;(c)侵袭减弱型GBM;以及(d)糖酵解主导的能量代谢增强型GBM。通过对多组学数据的一系列综合分析验证了该模型的生物学合理性,表明侵袭减弱型病例预后最佳,能量代谢增强型最差。
该研究揭示了GBM复杂的细胞异质性以及肿瘤发生背后细胞群体的分化层次。这种精确的分层系统为进一步的个体化治疗研究提供了启示。