Suppr超能文献

单细胞和空间转录组学的整合分析揭示了胶质母细胞瘤中的细胞异质性景观并建立了多基因风险模型。

Integration analysis of single-cell and spatial transcriptomics reveal the cellular heterogeneity landscape in glioblastoma and establish a polygenic risk model.

作者信息

Liu Yaxuan, Wu Zhenyu, Feng Yueyuan, Gao Jiawei, Wang Bo, Lian Changlin, Diao Bo

机构信息

School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.

Department of Basic Medicine, General Hospital of Central Theatre Command, Wuhan, Hubei, China.

出版信息

Front Oncol. 2023 Jun 15;13:1109037. doi: 10.3389/fonc.2023.1109037. eCollection 2023.

Abstract

BACKGROUND

Glioblastoma (GBM) is adults' most common and fatally malignant brain tumor. The heterogeneity is the leading cause of treatment failure. However, the relationship between cellular heterogeneity, tumor microenvironment, and GBM progression is still elusive.

METHODS

Integrated analysis of single-cell RNA sequencing (scRNA-seq) and spatial transcriptome sequencing (stRNA-seq) of GBM were conducted to analyze the spatial tumor microenvironment. We investigated the subpopulation heterogeneity of malignant cells through gene set enrichment analyses, cell communications analyses, and pseudotime analyses. Significantly changed genes of the pseudotime analysis were screened to create a tumor progress-related gene risk score (TPRGRS) using Cox regression algorithms in the bulkRNA-sequencing(bulkRNA-seq) dataset. We combined the TPRGRS and clinical characteristics to predict the prognosis of patients with GBM. Furthermore, functional analysis was applied to uncover the underlying mechanisms of the TPRGRS.

RESULTS

GBM cells were accurately charted to their spatial locations and uncovered their spatial colocalization. The malignant cells were divided into five clusters with transcriptional and functional heterogeneity, including unclassified malignant cells and astrocyte-like, mesenchymal-like, oligodendrocytes-progenitor-like, and neural-progenitor-like malignant cells. Cell-cell communications analysis in scRNA-seq and stRNA-seq identified ligand-receptor pairs of the CXCL, EGF, FGF, and MIF signaling pathways as bridges implying that tumor microenvironment may cause malignant cells' transcriptomic adaptability and disease progression. Pseudotime analysis showed the differentiation trajectory of GBM cells from proneural to mesenchymal transition and identified genes or pathways that affect cell differentiation. TPRGRS could successfully divide patients with GBM in three datasets into high- and low-risk groups, which was proved to be a prognostic factor independent of routine clinicopathological characteristics. Functional analysis revealed the TPRGRS associated with growth factor binding, cytokine activity, signaling receptor activator activity functions, and oncogenic pathways. Further analysis revealed the association of the TPRGRS with gene mutations and immunity in GBM. Finally, the external datasets and qRT-PCR verified high expressions of the TPRGRS mRNAs in GBM cells.

CONCLUSION

Our study provides novel insights into heterogeneity in GBM based on scRNA-seq and stRNA-seq data. Moreover, our study proposed a malignant cell transition-based TPRGRS through integrated analysis of bulkRNA-seq and scRNA-seq data, combined with the routine clinicopathological evaluation of tumors, which may provide more personalized drug regimens for GBM patients.

摘要

背景

胶质母细胞瘤(GBM)是成人最常见且致命的恶性脑肿瘤。异质性是治疗失败的主要原因。然而,细胞异质性、肿瘤微环境与GBM进展之间的关系仍不清楚。

方法

对GBM进行单细胞RNA测序(scRNA-seq)和空间转录组测序(stRNA-seq)的综合分析,以分析空间肿瘤微环境。我们通过基因集富集分析、细胞通讯分析和拟时间分析研究恶性细胞的亚群异质性。在批量RNA测序(bulkRNA-seq)数据集中,使用Cox回归算法筛选拟时间分析中显著变化的基因,以创建肿瘤进展相关基因风险评分(TPRGRS)。我们将TPRGRS与临床特征相结合,以预测GBM患者的预后。此外,应用功能分析来揭示TPRGRS的潜在机制。

结果

GBM细胞被精确绘制到其空间位置,并揭示了它们的空间共定位。恶性细胞被分为五个具有转录和功能异质性的簇,包括未分类的恶性细胞以及星形胶质细胞样、间充质样、少突胶质细胞祖细胞样和神经祖细胞样恶性细胞。scRNA-seq和stRNA-seq中的细胞间通讯分析确定了CXCL、EGF、FGF和MIF信号通路的配体-受体对为桥梁,这意味着肿瘤微环境可能导致恶性细胞的转录组适应性和疾病进展。拟时间分析显示了GBM细胞从神经前体细胞向间充质细胞转变的分化轨迹,并确定了影响细胞分化的基因或通路。TPRGRS可以成功地将三个数据集中的GBM患者分为高风险组和低风险组,这被证明是一个独立于常规临床病理特征的预后因素。功能分析揭示了TPRGRS与生长因子结合、细胞因子活性、信号受体激活剂活性功能和致癌途径相关。进一步分析揭示了TPRGRS与GBM中的基因突变和免疫的关联。最后,外部数据集和qRT-PCR验证了GBM细胞中TPRGRS mRNA的高表达。

结论

我们的研究基于scRNA-seq和stRNA-seq数据,为GBM的异质性提供了新的见解。此外,我们的研究通过对bulkRNA-seq和scRNA-seq数据的综合分析,结合肿瘤的常规临床病理评估,提出了一种基于恶性细胞转变的TPRGRS,这可能为GBM患者提供更个性化的药物治疗方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验