Suppr超能文献

胃低级别上皮内瘤变病理升级预测模型的构建与验证

Development and validation of a predictive model for the pathological upgrading of gastric low-grade intraepithelial neoplasia.

作者信息

Lyu Kun-Ming, Chen Qian-Qian, Xu Yi-Fan, Yuan Yao-Qian, Wang Jia-Feng, Wan Jun, Ling-Hu En-Qiang

机构信息

Department of Gastroenterology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing 100853, China.

Medical College, Chinese People's Liberation Army General Hospital, Beijing 100853, China.

出版信息

World J Gastroenterol. 2025 Mar 21;31(11):104377. doi: 10.3748/wjg.v31.i11.104377.

Abstract

BACKGROUND

The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia (LGIN) presents challenges in developing diagnostic and treatment protocols.

AIM

To develop a risk prediction model for the pathological upgrading of gastric LGIN to aid clinical diagnosis and treatment.

METHODS

We retrospectively analyzed data from patients newly diagnosed with gastric LGIN who underwent complete endoscopic resection within 6 months at the First Medical Center of Chinese People's Liberation Army General Hospital between January 2008 and December 2023. A risk prediction model for the pathological progression of gastric LGIN was constructed and evaluated for accuracy and clinical applicability.

RESULTS

A total of 171 patients were included in this study: 93 patients with high-grade intraepithelial neoplasia or early gastric cancer and 78 with LGIN. The logistic stepwise regression model demonstrated a sensitivity and specificity of 0.868 and 0.800, respectively, while the least absolute shrinkage and selection operator (LASSO) regression model showed sensitivity and specificity values of 0.842 and 0.840, respectively. The area under the curve (AUC) for the logistic model was 0.896, slightly lower than the AUC of 0.904 for the LASSO model. Internal validation with 30% of the data yielded AUC scores of 0.908 for the logistic model and 0.905 for the LASSO model. The LASSO model provided greater utility in clinical decision-making.

CONCLUSION

A risk prediction model for the pathological upgrading of gastric LGIN based on white-light and magnifying endoscopic features can accurately and effectively guide clinical diagnosis and treatment.

摘要

背景

胃低度上皮内瘤变(LGIN)的内镜活检病理与整体病理之间的差异给诊断和治疗方案的制定带来了挑战。

目的

建立胃LGIN病理升级的风险预测模型,以辅助临床诊断和治疗。

方法

我们回顾性分析了2008年1月至2023年12月期间在中国人民解放军总医院第一医学中心6个月内接受完整内镜切除的新诊断胃LGIN患者的数据。构建了胃LGIN病理进展的风险预测模型,并对其准确性和临床适用性进行了评估。

结果

本研究共纳入171例患者,其中高级别上皮内瘤变或早期胃癌患者93例,LGIN患者78例。逻辑逐步回归模型的敏感性和特异性分别为0.868和0.800,而最小绝对收缩和选择算子(LASSO)回归模型的敏感性和特异性值分别为0.842和0.840。逻辑模型的曲线下面积(AUC)为0.896,略低于LASSO模型的AUC(0.904)。用30%的数据进行内部验证,逻辑模型的AUC评分为0.908,LASSO模型的AUC评分为0.905。LASSO模型在临床决策中具有更大的实用性。

结论

基于白光和放大内镜特征的胃LGIN病理升级风险预测模型能够准确、有效地指导临床诊断和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b29/11924016/b373787053bc/104377-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验