Zhang Yongyi, Guo Zhehan, Lai Renkui, Zou Xu, Ma Liuling, Cai Tianjin, Huang Jingyi, Huang Wenxiang, Zou Bingcheng, Zhou Jinming, Li Jinxin
Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China.
Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.
Cardiovasc Ther. 2025 Mar 15;2025:9106621. doi: 10.1155/cdr/9106621. eCollection 2025.
Coronary artery disease (CAD) is a complex condition influenced by genetic factors, lifestyle, and other risk factors that contribute to increased mortality. This study is aimed at evaluating the diagnostic potential of genes associated with cuproptosis, ferroptosis, and pyroptosis (CFP) using network modularization and machine learning methods. CAD-related datasets GSE42148, GSE20680, and GSE20681 were sourced from the GEO database, and genes related to CFP genes were gathered from MsigDB and FerrDb datasets and literature. To identify diagnostic genes linked to these pathways, weighted gene coexpression network analysis (WGCNA) was used to isolate CAD-related modules. The diagnostic accuracy of key genes in these modules was then assessed using LASSO, SVM, and random forest models. Immunity and drug sensitivity correlation analyses were subsequently performed to investigate possible underlying mechanisms. The function of a potential gene, STK17B, was analyzed through western blot and transwell assays. Two CAD-related modules with strong correlations were identified and validated. The SVM model outperformed LASSO and random forest models, demonstrating superior discriminative power (AUC = 0.997 in the blue module and AUC = 1.000 in the turquoise module), with nine key genes identified: CTDSP2, DHRS7, NLRP1, MARCKS, PELI1, RILPL2, JUNB, STK17B, and SLC40A1. Knockdown of STK17B inhibited cell migration and invasion in human umbilical vein endothelial cells. In summary, our findings suggest that CFP genes hold potential as diagnostic biomarkers and therapeutic targets, with STK17B playing a role in CAD progression.
冠状动脉疾病(CAD)是一种受遗传因素、生活方式和其他导致死亡率增加的风险因素影响的复杂病症。本研究旨在使用网络模块化和机器学习方法评估与铜死亡、铁死亡和焦亡(CFP)相关基因的诊断潜力。CAD相关数据集GSE42148、GSE20680和GSE20681来自GEO数据库,与CFP基因相关的基因从MsigDB和FerrDb数据集及文献中收集。为了识别与这些途径相关的诊断基因,使用加权基因共表达网络分析(WGCNA)来分离CAD相关模块。然后使用LASSO、支持向量机(SVM)和随机森林模型评估这些模块中关键基因的诊断准确性。随后进行免疫和药物敏感性相关性分析,以研究可能的潜在机制。通过蛋白质免疫印迹和Transwell实验分析了潜在基因STK17B的功能。识别并验证了两个具有强相关性的CAD相关模块。SVM模型优于LASSO和随机森林模型,显示出卓越的判别能力(蓝色模块中的曲线下面积[AUC]=0.997,绿松石色模块中的AUC=1.000),确定了九个关键基因:CTDSP2、DHRS7、NLRP1、MARCKS、PELI1、RILPL2、JUNB、STK17B和SLC40A1。敲低STK17B可抑制人脐静脉内皮细胞的迁移和侵袭。总之,我们的研究结果表明,CFP基因具有作为诊断生物标志物和治疗靶点的潜力,STK17B在CAD进展中发挥作用。