Suppr超能文献

一个用于在估计动物疾病全球负担的大规模项目中处理不确定性的框架。

A framework for handling uncertainty in a large-scale programme estimating the Global Burden of Animal Diseases.

作者信息

Clough Helen E, Chaters Gemma L, Havelaar Arie H, McIntyre K Marie, Marsh Thomas L, Hughes Ellen C, Jemberu Wudu T, Stacey Deborah, Afonso Joao Sucena, Gilbert William, Raymond Kassy, Rushton Jonathan

机构信息

Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom.

Lancaster Medical School, CHICAS, Lancaster University, Lancaster, United Kingdom.

出版信息

Front Vet Sci. 2025 Mar 7;12:1459209. doi: 10.3389/fvets.2025.1459209. eCollection 2025.

Abstract

Livestock provide nutritional and socio-economic security for marginalized populations in low and middle-income countries. Poorly-informed decisions impact livestock husbandry outcomes, leading to poverty from livestock disease, with repercussions on human health and well-being. The Global Burden of Animal Diseases (GBADs) programme is working to understand the impacts of livestock disease upon human livelihoods and livestock health and welfare. This information can then be used by policy makers operating regionally, nationally and making global decisions. The burden of animal disease crosses many scales and estimating it is a complex task, with extensive requirements for data and subsequent data synthesis. Some of the information that livestock decision-makers require is represented by quantitative estimates derived from field data and models. Model outputs contain uncertainty, arising from many sources such as data quality and availability, or the user's understanding of models and production systems. Uncertainty in estimates needs to be recognized, accommodated, and accurately reported. This enables robust understanding of synthesized estimates, and associated uncertainty, providing rigor around values that will inform livestock management decision-making. Approaches to handling uncertainty in models and their outputs receive scant attention in animal health economics literature; indeed, uncertainty is sometimes perceived as an analytical weakness. However, knowledge of uncertainty is as important as generating point estimates. Motivated by the context of GBADs, this paper describes an analytical framework for handling uncertainty, emphasizing uncertainty management, and reporting to stakeholders and policy makers. This framework describes a hierarchy of evidence, guiding movement from worst to best-case sources of information, and suggests a stepwise approach to handling uncertainty in estimating the global burden of animal disease. The framework describes the following pillars: background preparation; models as simple as possible but no simpler; assumptions documented; data source quality ranked; commitment to moving up the evidence hierarchy; documentation and justification of modelling approaches, data, data flows and sources of modelling uncertainty; uncertainty and sensitivity analysis on model outputs; documentation and justification of approaches to handling uncertainty; an iterative, up-to-date process of modelling; accounting for accuracy of model inputs; communication of confidence in model outputs; and peer-review.

摘要

牲畜为低收入和中等收入国家的边缘化人群提供营养和社会经济保障。决策信息不足会影响畜牧业产出,导致因牲畜疾病而陷入贫困,进而对人类健康和福祉产生影响。全球动物疾病负担(GBADs)项目致力于了解牲畜疾病对人类生计以及牲畜健康和福利的影响。这些信息随后可供区域、国家层面的政策制定者以及做出全球决策的人使用。动物疾病负担涉及多个层面,对其进行评估是一项复杂的任务,需要大量数据以及后续的数据综合分析。牲畜决策者所需的一些信息由从实地数据和模型得出的定量估计值来体现。模型输出包含不确定性,其来源众多,例如数据质量和可用性,或者用户对模型及生产系统的理解。估计中的不确定性需要得到认识、处理并准确报告。这有助于对综合估计值以及相关不确定性有更可靠的理解,为用于牲畜管理决策的数值提供严谨性。在动物健康经济学文献中,处理模型及其输出中的不确定性的方法很少受到关注;实际上,不确定性有时被视为一种分析弱点。然而,了解不确定性与得出点估计同样重要。受GBADs项目背景的推动,本文描述了一个处理不确定性的分析框架,强调不确定性管理以及向利益相关者和政策制定者报告。该框架描述了一个证据层次结构,指导从最坏情况到最佳情况的信息来源的转换,并提出了一种逐步处理动物疾病全球负担估计中不确定性的方法。该框架描述了以下几个支柱:背景准备;模型尽可能简单但不能过于简单;记录假设;对数据源质量进行排序;致力于提升证据层次;记录并说明建模方法、数据、数据流以及建模不确定性的来源;对模型输出进行不确定性和敏感性分析;记录并说明处理不确定性的方法;一个迭代的、最新的建模过程;考虑模型输入的准确性;传达对模型输出的信心;以及同行评审。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d974/11927218/00544ed5b43f/fvets-12-1459209-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验