Suppr超能文献

通过关系图神经网络进行二级结构信息的RNA反向设计

Secondary-Structure-Informed RNA Inverse Design via Relational Graph Neural Networks.

作者信息

Manzourolajdad Amirhossein, Mohebbi Mohammad

机构信息

Department of Computer Science, State University of New York Polytechnic Institute, 100 Seymour Rd., Utica, NY 13502, USA.

Department of Computer Science and Information Science, University of North Georgia, Dahlonega, GA 30597, USA.

出版信息

Noncoding RNA. 2025 Feb 26;11(2):18. doi: 10.3390/ncrna11020018.

Abstract

RNA inverse design is an essential part of many RNA therapeutic strategies. To date, there have been great advances in computationally driven RNA design. The current machine learning approaches can predict the sequence of an RNA given its 3D structure with acceptable accuracy and at tremendous speed. The design and engineering of RNA regulators such as riboswitches, however, is often more difficult, partly due to their inherent conformational switching abilities. Although recent state-of-the-art models do incorporate information about the multiple structures that a sequence can fold into, there is great room for improvement in modeling structural switching. In this work, a relational geometric graph neural network is proposed that explicitly incorporates alternative structures to predict an RNA sequence. Converting the RNA structure into a geometric graph, the proposed model uses edge types to distinguish between the primary structure, secondary structure, and spatial positioning of the nucleotides in representing structures. The results show higher native sequence recovery rates over those of gRNAde across different test sets (eg. 72% vs. 66%) and a benchmark from the literature (60% vs. 57%). Secondary-structure edge types had a more significant impact on the sequence recovery than the spatial edge types as defined in this work. Overall, these results suggest the need for more complex and case-specific characterization of RNA for successful inverse design.

摘要

RNA反向设计是许多RNA治疗策略的重要组成部分。迄今为止,计算驱动的RNA设计已经取得了巨大进展。当前的机器学习方法能够以可接受的准确率和极快的速度根据RNA的三维结构预测其序列。然而,诸如核糖开关等RNA调控元件的设计和工程化往往更加困难,部分原因在于它们固有的构象转换能力。尽管最近的先进模型确实纳入了序列可折叠成的多种结构的信息,但在构建结构转换模型方面仍有很大的改进空间。在这项工作中,提出了一种关系几何图神经网络,该网络明确纳入了替代结构以预测RNA序列。通过将RNA结构转换为几何图,所提出的模型使用边的类型来区分代表结构中核苷酸的一级结构、二级结构和空间定位。结果表明,在不同测试集上,与gRNAde相比,其天然序列回收率更高(例如,72%对66%),与文献中的一个基准相比也更高(60%对57%)。如本研究中所定义的,二级结构边的类型对序列回收率的影响比空间边的类型更大。总体而言,这些结果表明,为了成功进行反向设计,需要对RNA进行更复杂且针对具体情况的表征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4aa/11932209/ac518d105a15/ncrna-11-00018-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验