Suppr超能文献

通过自由基-自由基交叉偶联实现芳烃C-H烷基化的通用方法。

Generalizing arene C-H alkylations by radical-radical cross-coupling.

作者信息

Großkopf Johannes, Gopatta Chawanansaya, Martin Robert T, Haseloer Alexander, MacMillan David W C

机构信息

Merck Center for Catalysis at Princeton University, Princeton, NJ, USA.

出版信息

Nature. 2025 May;641(8061):112-121. doi: 10.1038/s41586-025-08887-2. Epub 2025 Mar 24.

Abstract

The efficient and modular diversification of molecular scaffolds, particularly for the synthesis of diverse molecular libraries, remains a notable challenge in drug optimization campaigns. The late-stage introduction of alkyl fragments is especially desirable due to the high sp character and structural versatility of these motifs. Given their prevalence in molecular frameworks, C(sp)-H bonds serve as attractive targets for diversification, although this process often requires difficult prefunctionalization or lengthy de novo syntheses. Traditionally, direct alkylations of arenes are achieved by using Friedel-Crafts reaction conditions with strong Brønsted or Lewis acids. However, these methods suffer from poor functional group tolerance and low selectivity, limiting their broad implementation in late-stage functionalization and drug optimization campaigns. Here we report the application of a new strategy for the selective coupling of differently hybridized radical species, which we term 'dynamic orbital selection'. This mechanistic model overcomes common limitations of Friedel-Crafts alkylations via the in situ formation of two distinct radical species, which are subsequently differentiated by a copper-based catalyst on the basis of their respective binding properties. As a result, we demonstrate here a general and highly modular reaction for the direct alkylation of native arene C-H bonds using abundant and benign alcohols and carboxylic acids as the alkylating agents. Ultimately, this solution overcomes the synthetic challenges associated with the introduction of complex alkyl groups into highly sophisticated drug scaffolds in a late-stage fashion, thereby granting access to vast new chemical space. Based on the generality of the underlying coupling mechanism, 'dynamic orbital selection' is expected to be a broadly applicable coupling platform for further challenging transformations involving two distinct radical species.

摘要

分子骨架的高效且模块化多样化,特别是用于合成多样的分子文库,在药物优化活动中仍然是一个显著的挑战。由于这些基团具有高sp特性和结构多样性,后期引入烷基片段尤其令人期待。鉴于C(sp)-H键在分子框架中普遍存在,它们成为多样化的有吸引力的目标,尽管这个过程通常需要困难的预官能团化或冗长的从头合成。传统上,芳烃的直接烷基化是通过使用具有强布朗斯特或路易斯酸的傅克反应条件来实现的。然而,这些方法存在官能团耐受性差和选择性低的问题,限制了它们在后期官能团化和药物优化活动中的广泛应用。在此,我们报告了一种用于选择性偶联不同杂化自由基物种的新策略的应用,我们将其称为“动态轨道选择”。这种机理模型通过原位形成两种不同的自由基物种克服了傅克烷基化的常见局限性,随后基于它们各自的结合特性,由铜基催化剂对其进行区分。结果,我们在此展示了一种通用且高度模块化的反应,该反应使用丰富且良性的醇类和羧酸作为烷基化剂,直接对天然芳烃C-H键进行烷基化。最终,该解决方案克服了在后期将复杂烷基引入高度复杂的药物骨架中所面临的合成挑战,从而开辟了广阔的新化学空间。基于潜在偶联机制的通用性,“动态轨道选择”有望成为一个广泛适用的偶联平台,用于涉及两种不同自由基物种的进一步具有挑战性的转化。

相似文献

2
Beyond Friedel and Crafts: Directed Alkylation of C-H Bonds in Arenes.超越傅克反应:芳烃中碳氢键的定向烷基化
Angew Chem Int Ed Engl. 2019 May 27;58(22):7202-7236. doi: 10.1002/anie.201806629. Epub 2019 Feb 14.
4
Beyond Friedel and Crafts: Innate Alkylation of C-H Bonds in Arenes.超越 Friedel 和 Crafts:芳环中 C-H 键的固有烷基化。
Angew Chem Int Ed Engl. 2019 Jun 3;58(23):7558-7598. doi: 10.1002/anie.201806631. Epub 2019 Apr 4.
5

本文引用的文献

3
Alcohol-alcohol cross-coupling enabled by S2 radical sorting.通过S2自由基分选实现的醇-醇交叉偶联。
Science. 2024 Mar 22;383(6689):1350-1357. doi: 10.1126/science.adl5890. Epub 2024 Mar 21.
4
Alkene dialkylation by triple radical sorting.三重自由基分类法进行烯烃的二烷基化。
Nature. 2024 Apr;628(8006):104-109. doi: 10.1038/s41586-024-07165-x. Epub 2024 Feb 13.
6
Late-stage Functionalization for Improving Drug-like Molecular Properties.晚期功能化提高药物样分子性质。
Chem Rev. 2023 Jul 12;123(13):8127-8153. doi: 10.1021/acs.chemrev.2c00797. Epub 2023 Jun 7.
7
Late-Stage C-H Functionalization of Azines.嗪的晚期 C-H 功能化。
Chem Rev. 2023 Jun 28;123(12):7655-7691. doi: 10.1021/acs.chemrev.2c00881. Epub 2023 May 3.
9
An update on late-stage functionalization in today's drug discovery.今日药物研发中晚期功能化的最新进展。
Expert Opin Drug Discov. 2023 Jun;18(6):597-613. doi: 10.1080/17460441.2023.2205635. Epub 2023 Apr 28.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验