Suppr超能文献

伊拉斯谟+计划学生在欧洲的流动情况:2014年至2022年按地理位置定位的个人和总体流动趋势

Mobility of Erasmus+ students in Europe: Geolocated individual and aggregate mobility flows from 2014 to 2022.

作者信息

Väisänen Tuomas, Malekzadeh Milad, Inkeröinen Oula, Järv Olle

机构信息

Digital Geography Lab, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.

Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland.

出版信息

Sci Data. 2025 Mar 24;12(1):489. doi: 10.1038/s41597-025-04789-0.

Abstract

Student mobility is a distinct form of human movement. It can indicate the characteristics and attractiveness of regions, which is relevant for governance, policy, and planning. In Europe, the Erasmus+ programme has facilitated the mobility of over two million students between 2014 and 2022, and this individual-level mobility data is openly available. However, the lack of spatial information hinders its use in geographical research. In this article, we present enriched student mobility data by adding spatial information at the Local Administrative Unit (LAU) and Nomenclature of Territorial Units for Statistics (NUTS) 3 regional levels. Using the Photon geocoding service, we converted textual origin and destination locations into spatial data, creating a precise annual-level mobility dataset. The geolocated student mobility dataset contains both individual- and aggregate-level mobility flows between LAU and NUTS 3 spatial units across Europe from 2014 to 2022. We validated the geolocated data through random sampling and manual verification, achieving accuracy scores above 96%. Finally, we provide use cases for the data.

摘要

学生流动是一种独特的人口流动形式。它可以表明地区的特征和吸引力,这与治理、政策和规划相关。在欧洲,“伊拉斯谟+”计划在2014年至2022年期间促进了超过200万学生的流动,并且这些个人层面的流动数据是公开可用的。然而,缺乏空间信息阻碍了其在地理研究中的应用。在本文中,我们通过在地方行政单位(LAU)和统计领土单位命名法(NUTS)3区域层面添加空间信息,呈现了丰富的学生流动数据。利用Photon地理编码服务,我们将文本形式的出发地和目的地位置转换为空间数据,创建了一个精确的年度层面流动数据集。这个地理定位的学生流动数据集包含了2014年至2022年期间欧洲各地LAU和NUTS 3空间单位之间的个人层面和总体层面的流动情况。我们通过随机抽样和人工核查对地理定位数据进行了验证,准确率超过96%。最后,我们提供了该数据的应用案例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7f3/11933694/0c7b66f936a5/41597_2025_4789_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验